Answer:
Wavelength is calculated as 213.9 nm
Solution:
As per the question:
Wavelength of light = 570 nm
Time, t = 16.5 ns
Thickness of glass slab, d = 0.865 ns
Time taken to travel from laser to the photocell, t' = 21.3
Speed of light in vacuum, c = ![3\times 10^{8}\ m/s](https://tex.z-dn.net/?f=3%5Ctimes%2010%5E%7B8%7D%5C%20m%2Fs)
Now,
To calculate the wavelength of light inside the glass:
After the insertion of the glass slab into the beam, the extra time taken by light to cover a thickness t = 0.865 m is:
t' - t = 21.3 - 16.5 = 4.8 ns
Thus
![\frac{d}{\frac{c}{n}} - \frac{d}{v} = 4.8\times 10^{- 9}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7B%5Cfrac%7Bc%7D%7Bn%7D%7D%20-%20%5Cfrac%7Bd%7D%7Bv%7D%20%3D%204.8%5Ctimes%2010%5E%7B-%209%7D)
![\frac{0.8656}{\frac{c}{n}} - \frac{0.865}{v} = 4.8\times 10^{- 9}](https://tex.z-dn.net/?f=%5Cfrac%7B0.8656%7D%7B%5Cfrac%7Bc%7D%7Bn%7D%7D%20-%20%5Cfrac%7B0.865%7D%7Bv%7D%20%3D%204.8%5Ctimes%2010%5E%7B-%209%7D)
where
n = refractive index of the medium
v = speed of light in medium
![\frac{0.8656}{\frac{c}{n}} - \frac{0.865}{v} = 4.8\times 10^{- 9}](https://tex.z-dn.net/?f=%5Cfrac%7B0.8656%7D%7B%5Cfrac%7Bc%7D%7Bn%7D%7D%20-%20%5Cfrac%7B0.865%7D%7Bv%7D%20%3D%204.8%5Ctimes%2010%5E%7B-%209%7D)
![n = \frac{4.8\times 10^{- 9}\times 3.00\times 10^{8}}{0.865} + 1](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7B4.8%5Ctimes%2010%5E%7B-%209%7D%5Ctimes%203.00%5Ctimes%2010%5E%7B8%7D%7D%7B0.865%7D%20%2B%201)
n = 2.66
Now,
The wavelength in the glass:
![\lambda' = \frac{\lambda }{n}](https://tex.z-dn.net/?f=%5Clambda%27%20%3D%20%5Cfrac%7B%5Clambda%20%7D%7Bn%7D)
![\lambda' = \frac{570}{2.66} = 213.9\ nm](https://tex.z-dn.net/?f=%5Clambda%27%20%3D%20%5Cfrac%7B570%7D%7B2.66%7D%20%3D%20213.9%5C%20nm)