Answer: 97.2223 ml
Explanation:
The rule that we will use to solve this problem is:
M2*V1 = M2*V2 where:
M1 is the initial concentration = 3.5 m
V1 is the initial volume = 0.25 l = 250 ml
M2 is the final concentration = 9 m
V2 is the final volume that we need to find
Substitute with the givens in the above equation to get V2 as follows:
3.5*250 = 9*V2
V2 = <em><u>97.2223 ml</u></em>
Once a person is exposed to chemical, it may enter the bloodstream, and eventually reach the liver. The liver attempts to detoxify harmful chemicals in the body harmful chemicals in the body by converting them to less toxic ones or ones that could be used by the body.
the molecular interpretation is not suitable for the assumption that there are much more interactions in the intermolecular level
We must account for the breaking/creation of hydrogen bondings, which is not the scope of the equilibria made in trouton's analysis