The forces of gravity between two objects are inversely proportional to
the square of the distance between them. So reducing the distance
by 1/2 means increasing the gravitational force by 2² = 4 times.
The 1 million newtons becomes 4 million newtons.
Note that this does NOT mean the satellite's altitude above the surface.
When you're calculating gravitational forces, it's the distance between
the centers of the objects. So the question is a meaningful exercise
only if we use the distance between the satellite and the planet's center.
As the wave length increases the energy of the wave decreases as the equation that relates the c=λυ λ is the wave length and υ is the frequency (which is directly proportional to the energy).
In the wave length spectrum, x-ray has a shorter wave length, meaning that
x-ray has a higher energy than ultraviolet waves.
Hope this helps.
Answer:
No.
Explanation:
Given the following :
Velocity (V) of ball = 5m/s
Radius = 1m
Can the ball reach the highest point of the circular track
of radius 1.0 m?
The highest point in the track could be considered as the diameter of the circle :
Radius = diameter / 2;
Diameter = (2 * Radius) = (2*1) = 2
Maximum height which the ball can reach :
Using the relation :
Kinetic Energy = Potential Energy
0.5mv^2 = mgh
0.5v^2 = gh
0.5(5^2) = 9.8h
0.5 * 25 = 9.8h
12.5 = 9.8h
h = 12.5 / 9.8
h = 1.2755
h = 1.26m
Therefore maximum height which can be reached is 1.26m.
Since h < Diameter
The Volume of a Cube with a side(s) of 11.4 cm is
<span>V = s^3 </span>
<span> V = (11.4)^3 cm^3 </span>
<span> V = 1481.544 cm^3 </span>
<span> V = 1482 cm^3</span>
<span>however the Surface Area of a cube is the combined area of all the sides </span>
<span> A = 6s^2 </span>
<span> A = 6(11.4)^2 cm^2 </span>
<span> A = 779.76 cm^2 </span>
I'm not sure about the magnitude, but the direction of the normal force is upward.