From the momentum conservation we know that the initial momentum is equal to the final momentum. The momentum in a singular way can be defined as the product between the mass and the velocity of an object. In the presented system, however, there are two objects, therefore the mass of both and the speed of both, before and after the collision must be taken into account. Mathematically we could describe this as

Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
From here we can realize that it is necessary to use the system on both cars to be able to predict what will happen either with their masses, or their speeds.
The correct answer is C.
Answer:
The lever arm could decrease or increase depending of the initial angle.
Explanation:
The lever arm d is calculated by:
d = rsin(θ)
where r is the radius and θ the angle between the force and the radius.
So, the increse or decrees of d depends of the sin of the angle θ, if the initial angle is greather than 90° and the angle decrease to an angle closer to 90°, the lever arm will increase but if the initial angle is 90° or lower and the angle decrease, the lever arm will decrease.
Henry will lift 200 N load 20 m up a ladder in 40 s. While the Ricardo will take 400 N load in 80 seconds. So, For Henry to take 400 N load it will take him 80 seconds in two attempts. And,also, he will have to cover 40 m of distance.
According to Newton laws of motion,
F = m*a
Here, m = 1,560 Kg
a = 1.30 m/s²
Substitute their values,
F = 1,560 * 1.30
F = 2028 N ~ 2030 N [ Closest value ]
In short, Your Answer would be Option C
Hope this helps!
Answer:
Burning. When you burn something, it turns into ash you can't make that thing turn into what it was before.