1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldfiish [28.3K]
3 years ago
8

Which equation represents an equilibrium system??

Physics
1 answer:
MrRissso [65]3 years ago
7 0

A. 2 S O 2, gas, plus O 2, gas, in equilibrium with 2 S O 3, gas.


You might be interested in
A 2.0-kg projectile is fired with initial velocity components v0x = 30 m/s and v0y = 40 m/s from a point on the Earth's surface.
EleoNora [17]

(a) The kinetic energy of the projectile when it reaches the highest point in its trajectory is 900 J.

(b) The work done  in firing the projectile is 2,500 J.

<h3>Kinetic energy of the projectile at maximum height</h3>

The kinetic energy of the projectile when it reaches the highest point in its trajectory is calculated as follows;

K.E = ¹/₂mv₀ₓ²

where;

  • m is mass of the projectile
  • v₀ₓ is the initial horizontal component of the velocity at maximum height

<u>Note:</u> At maximum height the final vertical velocity is zero and the final horizontal velocity is equal to the initial horizontal velocity.

K.E = (0.5)(2)(30²)

K.E = 900 J

<h3>Work done in firing the projectile</h3>

Based on the principle of conservation of energy, the work done in firing the projectile is equal to the initial kinetic energy of the projectile.

W = K.E(i) = ¹/₂mv²

where;

  • v is the resultant velocity

v = √(30² + 40²)

v = 50 m/s

W = (0.5)(2)(50²)

W = 2,500 J

Thus, the kinetic energy of the projectile when it reaches the highest point in its trajectory is 900 J.

The work done  in firing the projectile is 2,500 J.

Learn more about kinetic energy here: brainly.com/question/25959744

#SPJ1

5 0
1 year ago
Synchronous communications satellites are placed in a circular orbit that is 3.59 107 m above the surface of the earth. What is
suter [353]

Answer: 0.223 m/s^{2}

Explanation:

We can solve this with the Law of Universal Gravitation and knowing the acceleration due gravity g of an object above the surface of the planet decreases with the distance (height) of this object from the center of the planet.

Well, according to the law of universal gravitation:

F=G\frac{m_{E}m}{r^2}  (1)

Where:

F is the module of the force exerted between both bodies

G=6.67(10)^{-11}\frac{m^{3}}{kgs^{2}} is the gravitational constant

m_{E}=5.98(10)^{24} kg is the mass of the Earth

m are the mass of each communications satellite

r=R_{E}+h is the distance between the center of the Earth and the satellite

R_{E}=6.38(10)^{6} m is the radius of the Earth

h=3.59(10)^{7} m is the height of the satellite, measured from the Earth's surface

On the other hand, we know according to <u>Newton's 2nd law of motion:</u>

F=mg  (2)

Combining (1) and (2):

G\frac{m_{E}m}{r^2}=mg  (3)

Isolating g:

g=\frac{G M_{E}}{r^2}  (4)

Remembering r=R_{E}+h:

g=\frac{G M_{E}}{(R_{E}+h)^2}  (5)

g=\frac{(6.67(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.98(10)^{24} kg)}{(6.38(10)^{6} m+3.59(10)^{7} m)^2}  

Finally:

g=0.223 m/s^{2}  

5 0
3 years ago
A spring is 6.0cm long when it is not stretched, and 10cm long when a 7.0N force is applied. What force is needed to make it 20c
Artist 52 [7]

Answer:

Approximately 25\; {\rm N} (assuming that this spring is ideal.)

Explanation:

The displacement of a spring is the new length of the spring relative to the original length.

For example:

  • When the 6.0\; {\rm cm}-spring in this question is stretched to 10\; {\rm cm}, the displacement is x = (10\; {\rm cm} - 6.0\; {\rm cm}).
  • Likewise, if this spring is stretched to 20\; {\rm cm}, the displacement would be (20\; {\rm cm} - 6\; {\rm cm}).

If this spring is ideal, the force on the spring would be proportional to the displacement of the spring. In other words, if a force of F_{\text{a}} displaces this spring by x_{\text{a}}, while a force of F_{\text{b}} displaces this spring by x_{\text{b}}, then:

\displaystyle \frac{F_{\text{a}}}{x_{\text{a}}} = \frac{F_{\text{b}}}{x_{\text{b}}}.

In this question, it is given that a force of F_{\text{a}} = 7.0 \; {\rm N} would stretch this spring by x_{\text{a}} = (10\; {\rm cm} - 6.0\; {\rm cm}). Thus, the force F_{\text{b}} required to stretch this spring by x_{\text{a}} = (20\; {\rm cm} - 6.0\; {\rm cm}) would satisfy:

\displaystyle \frac{7.0\; {\rm N}}{10\; {\rm cm} - 6.0\; {\rm cm}}= \frac{F_{\text{b}}}{20\; {\rm cm} - 6.0\; {\rm cm}}.

Rearrange and solve for F_{\text{b}}:

\begin{aligned} F_{\text{b}} &= \frac{7.0\; {\rm N}}{10\; {\rm cm} - 6.0\; {\rm cm}} \, (20\; {\rm cm} - 6.0\; {\rm cm}) \\ &\approx 25\; {\rm N}\end{aligned}.

7 0
2 years ago
An observer standing near a window 5 m high observe that an object falling downwards is passing across the window in 0.5 s. Find
Valentin [98]

Answer:

Explanation:

An object in free fall, NOT experiencing parabolic motion, has an equation of

h(t)=\frac{1}{2} gt^2+h_0 which says:

The height of an object with respect to time in seconds is equal to the pull of gravity times time-squared plus the height from which it was dropped. Normally we use -9.8 for gravity but you said to use 10, so be it.

For us, h(t) is 5 because we are looking for the height of the window when the object is 5 m off the ground at .5 seconds;

g = 10 m/s/s, and

t = .5sec

5=\frac{1}{2}(-10)(.5)^2+h and

5 = -5(.5)² + h and

5 = -5(.25) + h and

5 = -1.25 + h so

h = 6.25

That's how high the window is above the ground.

8 0
2 years ago
Vector vector a has a magnitude of 29 units and points in the positive y-direction. when vector vector b is added to vector a ,
Nutka1998 [239]
Good morning.

We have:

\mathsf{\overset{\to}{a} = 29\overset{\to}{j}}

Where j is the unitary vector in the direction of the y-axis.

We have that 

\mathsf{\overset{\to}{a}+\overset{\to}{b} = -18\overset{\to}{j}}

We add the vector -a to both sides:

\mathsf{\overset{\to}{b} = -18\overset{\to}{j} -\overset{\to}{a} = -18\overset{\to}{j} -29\overset{\to}{j}}\\ \\ \mathsf{\overset{\to}{b}=-47\overset{\to}{j}}


Therefore, the magnitude of b is 47 units.
5 0
3 years ago
Read 2 more answers
Other questions:
  • a dog pulls on a pillow with a force of 8.4 N at an angle of 31 degrees above the horizontal. what is the x component of this fo
    9·1 answer
  • A driver in a car traveling at a speed of 26.8 m/s sees a deer 100 m away on the road. Calculate the minimum constant accelerati
    11·1 answer
  • A skier starting from rest skis straight down a slope 50 meters long in 5.0 seconds. What is the magnitude of the acceleration.
    6·1 answer
  • Which of the following is not an assumption that scientists must make about the natural world
    9·2 answers
  • How is the average American diet affected by our current food system?"
    6·1 answer
  • Octane (C8H18) is burned with dry air. The volumetric analysis of the products on a dry basis is as below. (Fig. 15–12) Determin
    13·1 answer
  • A night lamp uses a 30 W bulb. If it is left on continuously for 8 hours, how much energy will it use?
    15·2 answers
  • 3. A 0.145 kg ball moving horizontally at 20 m/s is struck by a bat that causes the ball to move in the
    11·1 answer
  • You want to calculate how long it takes a ball to fall to the ground from a height of 20 m. Which equation can you use to calcul
    11·1 answer
  • A plane is traveling at 80 m/s. To prepare for landing, itslows down at a rate of 0.25 ms squared for 120 seconds. Calculate the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!