Answer:
v=5.86 m/s
Explanation:
Given that,
Length of the string, l = 0.8 m
Maximum tension tolerated by the string, F = 15 N
Mass of the ball, m = 0.35 kg
We need to find the maximum speed the ball can have at the top of the circle. The ball is moving under the action of the centripetal force. The length of the string will be the radius of the circular path. The centripetal force is given by the relation as follows :

v is the maximum speed

Hence, the maximum speed of the ball is 5.86 m/s.
Answer:
2.67 m
Explanation:
k = Spring constant = 1.5 N/m
g = Acceleration due to gravity = 9.81 m/s²
l = Unstretched length
Frequency of SHM motion is given by

Frequency of pendulum is given by

Given in the question


The unstretched length of the spring is 2.67 m
The main difference between the model of the atom proposed by Greek philosophers and the model proposed centuries later by Dalton is that the Greek one was mainly speculative and philosophical - it wasn't based on real evidence, but on their suggestions and thoughts about the matter. On the other hand, Dalton had the means to prove his theory using viable evidence, not just speculations.