Answer:
Superconducting materials can transport electrons with no resistance, and hence release no heat, sound, or other energy forms. Superconductivity occurs at a specific material's critical temperature (Tc). As temperature decreases, a superconducting material's resistance gradually decreases until it reaches critical temperature. At this point resistance drops off, often to zero, as shown in the graph at right.
Explanation:
Renewable energy
<u>Advantages :-</u>
1. Easily regenerate
2. Boost economic growth
3. Easily available
4. Support environment
5. Low maintenance cost
<u>Disadvantages :-</u>
1. Weather dependency
2. High installation cost
3. Noise caused by wind energy
4. Fluctuation problem (solar)
5. Intermittency issue (wind)
Non-renewable energy
<u>Advantages :-</u>
1. Concentrated energy source
2. Reliable energy source
3. Can be built anywhere
4. No radioactive waste
<u>Disadvantages :-</u>
1. Produces greenhouse gases
2. Contributes to global warming
3. Produces acid rain
4. Harmful to environment when they are burnt
<em>I hope this helps.....</em>
This question is incomplete; here is the complete question:
Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the frequency as 3 hertz, which statement about the wave is accurate?
A. The wave has traveled 32.4 cm in 3 seconds.
B. The wave has traveled 32.4 cm in 9 seconds.
C. The wave has traveled 97.2 cm in 3 seconds.
D. The wave has traveled 97.2 cm in 1 second.
The answer to this question is D. The wave has traveled 97.2 cm in 1 second.
Explanation:
The frequency of a wave, which is in this case 3 hertz, represents the number of waves that go through a point during 1 second. According to this, if the frequency of the wave is 3 hertz this means in 1 second there were 3 waves. Moreover, if you multiply the wavelength (32.4cm) by the frequency (3) you will know the distance the wave traveled in 1 second: 32.4 x 3 = 97.2 cm. This makes option D the correct one as the distance in 1 second was 97.2 cm.
Storing music digitally requires less storage room than analog records or tapes. Digital music is easier to copy and the copies are the same as the original. The quality of the signal does not degrade over long periods of time.