The correct choice is
B. Double-replacement reactions
in this type of reaction , two ionic compounds react and swaps their cations or anions giving two new compounds in the product. hence the double replacement reactions does not deal with the nucleus. all other terms like strong nuclear forces, radioactivity and nuclear decay deal with the nucleus.
The water pressure on the first floor must be 455 PSI in order to push the water to the 13th floor at the given pressure.
The given parameters;
- <em>Pressure on the 13 th floor, P₁ = 35 PSI</em>
- <em>Distance between each floor, d = 10 ft</em>
The vertical pressure of the water is calculated as follows;

The vertical height of the first floor from the 13th floor = 130 ft
The vertical height of the 13 ft floor = 10 ft

Thus, the water pressure on the first floor must be 455 PSI in order to push the water to the 13th floor at the given pressure.
Learn more about vertical height and pressure here: brainly.com/question/15691554
Answer:
0.5 m/s north
Explanation:
Take east to be +x, west to be -x, north to be +y, and south to be -y.
His displacement in the x direction is:
x = 20 m − 20 m = 0 m
His displacement in the y direction is:
y = 10 m
His total displacement is therefore 10 m north.
His velocity is equal to displacement divided by time.
v = 10 m north / 20 s
v = 0.5 m/s north
Answer:
The magnitude of the tension in he string is equal to the magnitude of the weight of the object.
Explanation:
According to the Newton's 1st law, An object will remain at rest or in uniform motion in a straight line unless acted upon by an unbalanced force.
In here, the elevator is moving with a constant speed. So the object must have the equal constant speed. Which means, it has a uniform motion. According to Newton's 1st law, the total unbalanced force on the object must be zero . As we know, there are only two forces are on the object and they are,
The tension in string(T) , The weight of the object(W) .
∴ F = 0
T - W = 0
So to balanced those forces, the magnitude of the tension in the string must be equal to the magnitude of the weight of the object.