Answer:
a = 120 m/s²
Explanation:
We apply Newton's second law in the x direction:
∑Fₓ = m*a Formula (1)
Known data
Where:
∑Fₓ: Algebraic sum of forces in the x direction
F: Force in Newtons (N)
m: mass (kg)
a: acceleration of the block (m/s²)
F = 1200N
m = 10 kg
Problem development
We replace the known data in formula (1)
1200 = 10*a
a = 1200/10
a = 120 m/s²
Solution :
Given data is :
Density of the milk in the tank, 
Length of the tank, x = 9 m
Height of the tank, z = 3 m
Acceleration of the tank, 
Therefore, the pressure difference between the two points is given by :

Since the tank is completely filled with milk, the vertical acceleration is 

Therefore substituting, we get




Therefore the maximum pressure difference in the tank is Δp = 47.87 kPa and is located at the bottom of the tank.
Answer:
The maximum height reached by the water is 117.55 m.
Explanation:
Given;
initial velocity of the water, u = 48 m/s
at maximum height the final velocity will be zero, v = 0
the water is going upwards, i.e in the negative direction of gravity, g = -9.8 m/s².
The maximum height reached by the water is calculated as follows;
v² = u² + 2gh
where;
h is the maximum height reached by the water
0 = u² + 2gh
0 = (48)² + ( 2 x -9.8 x h)
0 = 2304 - 19.6h
19.6h = 2304
h = 2304 / 19.6
h = 117.55 m
Therefore, the maximum height reached by the water is 117.55 m.
Answer:
Explanation:
Let the four resistances of th wheat stone bridge is
P, Q, R and S and the value of each is 350 ohm.
Here, P and Q are in series.
R' = P + Q = 350 + 350 = 700 ohm
Then R and S are in series
R' = R + S = 350 + 350 = 700 ohm
Now R' and R'' are in parallel.
So, the equivalent resistance is
Req = R' x R'' / ( R' + R'')
Req = 700 / 2 = 350 ohm
Thus, the reading of ohmmeter is 350 ohm.
Answer:
The angle of launch of the rubber band affects the initial velocity. The more the rubber band is stretched the more force it applies to return to equilibrium and the more kinetic energy that results in.