Answer:
Explanation:
noun
a group of atoms bonded together, representing the smallest fundamental unit of a chemical compound that can take part in a chemical reaction.
Answer:
3. increases with an increase in temperature.
Explanation:
The air more water vapor at higher temperatures because at higher temperatures the air expands and the inter-molecular space increases so the room for water molecules increases.
Warm air keeps the water molecules warm and prevents them from condensing.
The air can hold the moisture only upto its saturation quantity after which the precipitation occurs in the form of rain, snow, hail, sleet etc.
Answer:
In this scenario adding the dielectric material in between the plates will have no effect on the capacitance of the plates since the voltage remains unchanged
Explanation:
Normally Introducing a dielectric into a capacitor decreases the electric field, which decreases the voltage, which increases the capacitance.
A capacitor with a dielectric stores the same charge as one without a dielectric, but at a lower voltage.
Voltage and capacitance are inversely proportional when charge is constant.
Now in this case the voltage remains the same hence the charges remain the same also because voltage is inversely proportional to capacitance
Answer:
a
Explanation:
it corrodes after repeated exposure to excess moisture and dry air the rust itself can be turned back into iron after melting it and removing the waste
Answer:
a) F₁₂₀ = 1.34 pa A , b) F₂₀ = 0.746 pa A
Explanation:
Part. A
. The definition of pressure is
P = F / A
As the air can approach an ideal gas we can use the ideal gas equation
P V = n R T
Let's write this equation for two temperatures
P₁ V = n R T₁
P₂2 V = n R T₂
P₁ / P₂ = T₁ / T₂
point 1 has a pressure of P₁ = pa and a temperature of (20 + 273) K, point 2 is at (120 + 273) K, we calculate the pressure P₂
P₂ = P₁ T₂ / T₁
P₂ = pa 393/293
P₂ = 1.34 pa
We calculate the strength
P₂ = F₁₂₀ / A
F₁₂₀ = 1.34 pa A
Part B
In this case the data is
Point 1 has a temperature of 393K and an atmospheric pressure (P₁ = pa), point 2 has a temperature of 293K, let's calculate its pressure
P₁ / P₂ = T₁ / T₂
P₂ = P₁ T₂ / T₁
P₂ = pa 293/393
P₂ = 0.746 pa
Let's calculate the force (F20), from this point
F₂₀ / A = 0.746 pa
F₂₀ = 0.746 pa A