Static frictional force = ƒs = (Cs) • (Fɴ)
2.26 = (Cs) • m • g
2.26 = (Cs) • (1.85) • (9.8)
Cs = 0.125
kinetic frictional force = ƒκ = (Cκ) • (Fɴ)
1.49 = (Cκ) • m • g
1.49 = (Cκ) • (1.85) • (9.8)
Cκ = 0.0822
The electrical force acting on a charge q immersed in an electric field is equal to
where
q is the charge
E is the strength of the electric field
In our problem, the charge is q=2 C, and the force experienced by it is
F=60 N
so we can re-arrange the previous formula to find the intensity of the electric field at the point where the charge is located:
Answer:
2 m/s
Explanation:
The first part of the question the car is going in reverse or negative along the x axis. Then the second part the car is moving forward along the x axis. So the car would only have velocity in the current direction of movement. So our equation for velocity is as follows.
v = d/t
v = 10 m/5 s
v = 2 m/s
I'm going to say false hope that helped
Answer:
Hey there!
Inclined planes are used to lift heavy objects to higher places.
Hope this helps :)