I think the answer is c but I’m not sure
Answer:
The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
Explanation:
Given that,
The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.
A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80 degrees.
We need to find the angular separation between the refracted red and refracted blue beams while they are in the glass.
Using Snell's law for red light as :

Again using Snell's law for blue light as :

The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.
Answer:
Not be changed
Option: D
<u>Explanation:</u>
The physical quantity which has both ‘magnitude and direction’ is called vector. These vectors are represented by a line and an arrow, <em>the line represent the magnitude and arrow represent the direction of the physical quantity</em>. The vectors are added and subtracted according to the direction of the vectors.
According to the vector law addition while adding vectors direction and length of the vector is not be changed.<em> If the length of the vector changed the magnitude is also changed while so, while adding vectors length must not be changed.
</em>
The correct answer is:
<span>2. sound intensity is a more objective and physical attribute of a sound wave because loudness can vary from person to person
indeed, sound intensity is a measurable quantity, and so it is objective, while loudness is the subjective perception of the sound level, so it varies from person to person.</span>
B) Not work since decrease in temperature wouldnt cause evaporation or reverse in cycle.