W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules
Answer:
You could try finding a familiar peer to join the activity with your child. Or ask your child who their friends are at school, or what they look for in a friend at school.
Answer:
a. 7.046 Nm²/C
b. 2.348 Nm²/C
Explanation:
Data given:
Base of equilateral triangle = 25.0 cm = 0.25 m
Strength of electric field = 260 N/C
In order to find the electric flux we first have to find out the area of triangle.
Area of triangle = 
= 
= 0.0271 m³
Lets find electric flux,
Electric Flux = E. A
= 260×0.0271
= 7.046 Nm²/C
Now we can find the electric flux through each of the three sides.
Electric flux through three sides = 
= 2.348 N m²/C
Complete question:
What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally having its plane perpendicular to a uniform magnetic field 0.425 T. (This is 60 rev/s.)
Answer:
The peak emf generated by the coil is 15.721 kV
Explanation:
Given;
Radius of coil, r = 0.250 m
Number of turns, N = 500-turn
time of revolution, t = 4.17 ms = 4.17 x 10⁻³ s
magnetic field strength, B = 0.425 T
Induced peak emf = NABω
where;
A is the area of the coil
A = πr²
ω is angular velocity
ω = π/2t = (π) /(2 x 4.17 x 10⁻³) = 376.738 rad/s = 60 rev/s
Induced peak emf = NABω
= 500 x (π x 0.25²) x 0.425 x 376.738
= 15721.16 V
= 15.721 kV
Therefore, the peak emf generated by the coil is 15.721 kV