P1V1=P2V2
(1.00atm)(3.60L)=(2.50atm)V
3.60=(2.50atm)V
3.60/2.50=V
1.44L=V
Answer:
Alright, the first thing we have to do is to balance the chemical equation
2Na3N -----> 6Na + 1N2
We have 60g of Na3N, we convert them into moles by dividing the mass of the compound by the molar mass.
Molar mass of Na3N = (22.98 x 3) + (14) = 82.94g/mol
<u>60</u> = 0.72341451651 moles of Na3N
82.94
Now because we did the balanced equation, we know the mole to mole ratio of Na3N to N2 would be 2:1, so in order to get the moles of N2 you have to divide the moles of Na3N by 2
0.72341451651 moles/2 = 0.361707258 moles of N2
Now that we have the moles of N2, we just have to determine the mass of it in grams. In order to do that, just multiply the moles by the molar mass of N2 (28g/mol)
0.361707258 x 28 = <u>10.13g of N2</u>
<u>Therefore the decomposition of 60g of Na3N would result in 10.13g of N2 (nitrogen gas)</u>
Answer: E
=
1.55
⋅
10
−
19
J
Explanation:
The energy transition will be equal to 1.55
⋅
10
−
1
J
.
So, you know your energy levels to be n = 5 and n = 3. Rydberg's equation will allow you calculate the wavelength of the photon emitted by the electron during this transition
1
λ =
R
⋅
(
1
n
2
final −
1
n
2
initial )
, where
λ
- the wavelength of the emitted photon;
R
- Rydberg's constant - 1.0974
⋅
10
7
m
−
1
;
n
final
- the final energy level - in your case equal to 3;
n
initial
- the initial energy level - in your case equal to 5.
So, you've got all you need to solve for λ
, so
1
λ =
1.0974
⋅10 7
m
−
1
⋅
(....
−152
)
1
λ
=
0.07804
⋅
10
7
m
−
1
⇒
λ
=
1.28
⋅
10
−
6
m
Since
E
=
h
c
λ
, to calculate for the energy of this transition you'll have to multiply Rydberg's equation by
h
⋅
c
, where
h
- Planck's constant -
6.626
⋅
10
−
34
J
⋅
s
c
- the speed of light -
299,792,458 m/s
So, the transition energy for your particular transition (which is part of the Paschen Series) is
E
=
6.626
⋅
10
−
34
J
⋅
s
⋅
299,792,458
m/s
1.28
⋅
10
−
6
m
E
=
1.55
⋅
10
−
19
J
Answer:Avogadro's number is a very important relationship to remember: 1 mole = 6.022×1023 6.022 × 10 23 atoms, molecules, protons, etc. To convert from moles to atoms, multiply the molar amount by Avogadro's number. To convert from atoms to moles, divide the atom amount by Avogadro's number (or multiply by its reciprocal).
Explanation:
;-; ;-; ;-; ;-; ;-; ;-; ;-; ;-; ;-; ;-; ;-; ;-; ;-; ;-;