Answer:
In an experiment, a student transferred 4.50 mL of a liquid into a pre-weighed beaker (the weight of which was determined to be 35.986 g ).
Explanation:
<em>HOPE</em><em> </em><em>THIS</em><em> </em><em>HELPS</em><em> </em><em>YOU</em><em> </em>
<em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em><em>❤</em><em> </em>
Answer:
Explanation:
Group one:
The elements of group one shows +1 charge because these all are metals and lose their one valance electron.
Hydrogen lithium sodium potassium rubidium cesium francium
Group 2:
The elements of group two shows +2 charge because these all alkali metals and lose their two valance electrons.
beryllium magnesium calcium strontium barium radium
Group 3:
The elements of group three-B shoes +3 charge by losing three valance electrons.
Scandium yttrium lanthanum actinium
Group 4:
The elements of group 4th A and 4th B lose four electrons or gain four electrons to complete the octet and shows +4 or -4 charge.
Group 5:
Group 5th elements gain three electrons and shows -3 charge to complete the 8 electrons. (octet).
It involve the elements of group 5th A.
Group 6:
The elements of group 6A gain two electrons to complete the octet and shows -2 charge.
Group 7:
The elements of group 7A gain one electron to complete the octet and shows -1 charge.
Group 8:
The elements of group 8A are noble gases and have complete octet. That's why shows 0 charge.
Answer:
It is a sample of matter with both constant and definite composition
Explanation:
<u>Answer:</u>
2.0158 grams
<u>Explantion:</u>
We are to find the mass of the hydrogen atoms in 1 mole of water.
We know that the formula of water is: 
We can see, from the above mentioned formula, that water has 2 hydrpgen atoms.
From the periodic table, we get to know that Hydrogen has an atomic mass of 1.00794 grams.
As there are 2 atoms of hydrogen in water so
grams is the answer
Answer:
Both molarity and formality express concentration as moles of solute per liter of solution. Formality is a substance's total concentration in solution without regard to its specific chemical form. ... The formality of a solution is defined as the number of formula mass of any solute dissolved in 1 litre of solution.