Answer : The molecular weight of a gas is, 128.9 g/mole
Explanation : Given,
Density of a gas = 5.75 g/L
First we have to calculate the moles of gas.
At STP,
As, 22.4 liter volume of gas present in 1 mole of gas
So, 1 liter volume of gas present in
mole of gas
Now we have to calculate the molecular weight of a gas.
Formula used :

Now put all the given values in this formula, we get the molecular weight of a gas.


Therefore, the molecular weight of a gas is, 128.9 g/mole
<span>b. interaction of nature and nurture
</span>
Answer:
2.03
Explanation:
Let's <u>assume we have 1 L of the solution</u>:
- There would be 2.07 ethylene glycol moles.
- The solution would weigh (1000 mL * 1.02 g/mL) = 1020 g.
With that information we can <u>calculate the molality</u>:
- molality = moles of solute / kg of solvent
- molality = 2.07 moles / (1020 ÷ 1000) = 2.03 m
Keep in mind that this is only an estimate, as we used the kg of the solution and not of the solvent.
The answer
first of all, we should know that NaOH is a strong base. For such a product, the conentration of the OH - is equivalent to the concentration of the NaOH itself.
that means:
[ OH -] = [ NaOH] =<span>0.001 62
and for a strong basis, pH can be calculated as pH = 14 + log </span>[ OH -]
first we compute log [ OH -] :
log [ OH -] = log (0.001 62)= -2.79
finally pH = 14 -2.79 = 11.20
Answer:
1000N is needed to be applied.
Explanation:
Machines make doing work easier. They allow us use small effort to carry out work on huge amount of load.
The mechanical advantage of a machine;
(M.A) =load/effort
M.A = 0.6
Load =600N
effort =?
0.6 = 600/effort
effort = 600/0.6
effort = 1000N