Newton's three laws of motion can be used to describe the motion of the ice skating.
<h3>Newton's first law of motion</h3>
Newton's first law of motion states that an object at rest or uniform motion in a straight line will continue in that state unless it is acted upon by an external force.
- Based on this law, once the ice skating starts, it will continue endlessly unless external force stops it.
<h3>Newton's second law of motion</h3>
Newton's second law of motion states that the force applied to an object is directly proportional to the product of mass and acceleration of an object.
- Based on this law, the force applied to the ice skating is equal to the product of mass and acceleration of the ice skating.
<h3>Newton's third law of motion</h3>
This law states that action and reaction are equal and opposite.
- Based on this law, the force applied to the ice skating is equal in magnitude to the reaction of ice.
Learn more about Newton's law here: brainly.com/question/3999427
Answer: TRUE
Explanation:
Atoms are happy when they will not react with other elements while having a full outside ring of electrons because this makes them to be noble.
A stable atom possesses full outside ring of electrons while unstable one does not. So, they are happy also because of stability.
The fraction of energy that is lost is 25%, it depends how fast the ball was going until it lost 25% of its energy, the gravitational energy was transferred into the kinetic energy that helped the ball bounce back
Answer:
B
Explanation:
Potential difference has a SI Unit of Volt and its symbol is <em>V</em>. Hence answer is <u>B</u>.
A is wrong as it has the unit Joule <em>(J)</em> which is the SI unit for energy.
C is wrong as it has the unit Newton <em>(N)</em> which is the SI unit for force.
D is wrong as it has the unit Coulomb <em>(C)</em> which is the SI unit of charge.
You will use the Pythagorean Theorem to solve it.
c^2 = a^2 + b^2
c^2 = (1.5)^2 + (2)^2
c^2 = 6.25
c = square root of 6.25
c = 2.5
I hope this helps!