When a force causes a body to move, work is done on the object by the force. Work is the measure of the energy transfer when a force 'F' moves an object through a distance 'd'. So we say that energy is transferred from one energy store to another when work is done, and therefore, energy transferred = work done.
Answer:
Light of a shorter wavelength should be used.
Explanation:
This is studied in the phenomenon called photoelectric effect, in which light is able to release electrons from a metal, said electrons are called photoelectrons .
The experiments that have been carried out show that <u>increasing or decreasing the intensity of the light will not cause the photoelectrons to be emitted</u>, what will cause the photoelectrons to be emitted is to increase the frequency of the incident light.
And a higher frequency corresponds to a shorter wavelength according to the equation:

(where
is frequency,
the speed of light, and
the wavelength)
So the answer is that the wavelength of the light must be shortened to cause the emission of electrones.
My educated guess : 21.2 deg
Answer:
(a) 37.5 kg
(b) 4
Explanation:
Force, F = 150 N
kinetic friction coefficient = 0.15
(a) acceleration, a = 2.53 m/s^2
According to the newton's second law
Net force = mass x acceleration
F - friction force = m a
150 - 0.15 x m g = m a
150 = m (2.53 + 0.15 x 9.8)
m = 37.5 kg
(b) As the block moves with the constant speed so the applied force becomes the friction force.
