Answer: You will only see the color that cellophane lets through
Explanation:
Let's begin by the fact the whole electromagnetic spectrum is known as "white light", which is composed by a range of colors (wavelengths).
Now, if we have a source with white light (the Sun, for example) and we interpose a cellophane of any color (let's choose red), this cellophane will act as a filter and will only let pass the color of the cellophane.
This is because the filter will absorb the other colors of the spectrum.
Answer:
1.24 C
Explanation:
We know that the magnitude of the induced emf, ε = -ΔΦ/Δt where Φ = magnetic flux and t = time. Now ΔΦ = Δ(AB) = AΔB where A = area of coil and change in magnetic flux = Now ΔB = 0 - 0.750 T = -0.750 T, since the magnetic field changes from 0.750 T to 0 T.
The are , A of the circular loop is πD²/4 where D = diameter of circular loop = 16.7 cm = 16.7 × 10⁻²m
So, ε = -ΔΦ/Δt = -AΔB/Δt= -πD²/4 × -0.750 T/Δt = 0.750πD²/4Δt.
Also, the induced emf ε = iR where i = current in the coil and R = resistance of wire = ρl/A where ρ = resistivity of copper wire =1.68 × 10⁻⁸ Ωm, l = length of wire = πD and A = cross-sectional area of wire = πd²/4 where d = diameter of wire = 2.25 mm = 2.25 × 10⁻³ m.
So, ε = iR = iρl/A = iρπD/πd²/4 = 4iρD/d²
So, 4iρD/d² = 0.750πD²/4Δt.
iΔt = 0.750πD²/4 ÷ 4iρD/d²
iΔt = 0.750πD²d²/16ρ.
So the charge Q = iΔt
= 0.750π(Dd)²/16ρ
= 0.750π(16.7 × 10⁻²m 2.25 × 10⁻³ m)²/16(1.68 × 10⁻⁸ Ωm)
= 123.76 × 10⁻² C
= 1.2376 C
≅ 1.24 C
C look at how many oxygen, nitrogen’s, and hydrogens there are
Answer:
23.0 s
Explanation:
Given:
v₀ = 0 m/s
v = 19.8 m/s
a = 4.80 m/s²
Find: Δx and t
v² = v₀² + 2aΔx
(19.8 m/s)² = (0 m/s)² + 2 (4.80 m/s²) Δx
Δx = 40.84 m
v = at + v₀
19.8 m/s = (4.80 m/s²) t + 0 m/s
t = 4.125 s
The elevator takes 40.84 m and 4.125 s to accelerate, and therefore also 40.84 m and 4.125 s to decelerate.
That leaves 291.3 m to travel at top speed. The time it takes is:
291.3 m / (19.8 m/s) = 14.71 s
The total time is 4.125 s + 14.71 s + 4.125 s = 23.0 s.