You said "<span>A rocket's acceleration is 6.0 m/s2.".
That just means that its speed increases by 6 m/s every second.
Whenever you look at it, its speed is 6 m/s faster than it was
one second earlier.
If it starts out with zero speed, then its speed is 6 m/s after 1 second,
12 m/s after 2 seconds, 18 m/s after 3 seconds . . . etc.
How long does it take to reach 42 m/s ?
Well, how many times does it have to go 6 m/s FASTER
in order to build up to 42 m/s ?
That's just (42/6) = 7 times.
Writing it correctly, with the units and everything, it looks like this:
(42 m/s) / (6 m/s</span>²)
= (42/6) (m/s) / (m/s²)
= (42/6) (m/s · s²/m)
= 7 seconds
A) lithium and beryllium
Explanation:
From the given row on the periodic table, only lithium and beryllium will conduct electricity.
What makes a substance able to conduct electricity?
- The presence of free mobile electrons and in some, ions allows them to carry electric currents.
Metals are generally known to be good conductors of heat and electricity. This is because, metals have a large pool of electrons i.e free mobile electrons. They are electropositive with a large size and readily release their electrons for conduction.
Lithium and Beryllium are in the metallic block on the periodic table.
Learn more:
Metals brainly.com/question/2474874
#learnwithBrainly
a compound microscope is used for viewing samples at high magnification<span> 40 - 1000x, which is achieved by the combined effect of two sets of lenses: the ocular lens in the eyepiece and the objective lenses close to the sample.</span>
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.
Answer:
Carbohydrate, Fat and Protein
Explanation: