An airplane has a large amount of kinetic energy in flight due to its large mass and fast velocity.
I can't see that cube from here.
But if the length of the side of the cube is ' K ' units,
then the surface area of the cube is 6K² units², and
the volume of the cube is K³ units³.
The ratio of the surface area to the volume is
(6K² units²) / (K³ units³) = (6) / (K units) .
So for example, if the side of the cube is 2 inches, then
the ratio of surface area to volume is "3 per inch".
That's the answer. I did the whole thing in order to earn
the points, but I don't expect you to understand much of it,
because I see from your username that you suck at math.
I'm sorry you decided that. Now that you've put up the
brick wall, it'll be even harder for any math to find its way
in there, and you'll miss out on a lot of the fun.
Answer:
4.71 eV
Explanation:
For an electromagnetic wave with wavelength

the energy of the photons in the wave is given by

where h is the Planck constant and c the speed of light. Therefore, this is the minimum energy that a photon should have in order to extract a photoelectron from the copper surface.
The work function of a metal is the minimum energy required by the incident light in order to extract photoelectrons from the metal's surface. Therefore, the work function corresponds to the energy we found previously. By converting it into electronvolts, we find:

Answer:
Explanation:
The two charges are q and Q - q. Let the distance between them is r
Use the formula for coulomb's law for the force between the two charges

So, the force between the charges q and Q - q is given by

For maxima and minima, differentiate the force with respect to q.

For maxima and minima, the value of dF/dq = 0
So, we get
q = Q /2
Now 
the double derivate is negative, so the force is maxima when q = Q / 2 .