Answer:Broadly speaking, all energy in the universe can be categorized as either potential energy or kinetic energy. Potential energy is the energy associated with position, like a ball held up in the air. When you let go of that ball and let it fall, the potential energy converts into kinetic energy, or the energy associated with motion.
EXAMPLES: There are five types of kinetic energy: radiant, thermal, sound, electrical and mechanical. Let's explore several kinetic energy examples to better illustrate these various forms.
The final velocity of the projectile when it strikes the ground below is 198.51 m/s.
<h3>
Time of motion of the projectile</h3>
The time taken for the projectile to fall to the ground is calculated as follows;
h = vt + ¹/₂gt²
where;
- h is height of the cliff
- v is velocity
- t is time of motion
265 = (185 x sin45)t + (0.5)(9.8)t²
265 = 130.8t + 4.9t²
4.9t² + 130.8t - 265 = 0
solve the quadratic equation using formula method,
t = 1.89 s
<h3>Final velocity of the projectile</h3>
vyf = vyi + gt
where;
- vyf is the final vertical velocity
- vyi is initial vertical velocity
vyf = (185 x sin45) + (9.8 x 1.89)
vyf = 149.322 m/s
vxf = vxi
where;
- vxf is the final horizontal velocity
- vxi is the initial horizontal velocity
vxf = 185 x cos(45)
vxf = 130.8 m/s
vf = √(vyf² + vxf²)
where;
- vf is the speed of the projectile when it strikes the ground below
vf = √(149.322² + 130.8²)
vf = 198.51 m/s
Learn more about final velocity here: brainly.com/question/6504879
#SPJ1
Explanation:
Thomas Edison invented the incandescent light bulb which is kind of like the light bulbs we use today. but they have been improved throughout the years.
hope this is simple and understandable
Answer:


Explanation:
Given:
- mass of the object,

- elastic constant of the connected spring,

- coefficient of static friction between the object and the surface,

(a)
Let x be the maximum distance of stretch without moving the mass.
<em>The spring can be stretched up to the limiting frictional force 'f' till the body is stationary.</em>


where:
N = m.g = the normal reaction force acting on the body under steady state.


(b)
Now, according to the question:
- Amplitude of oscillation,

- coefficient of kinetic friction between the object and the surface,

Let d be the total distance the object travels before stopping.
<em>Now, the energy stored in the spring due to vibration of amplitude:</em>

<u><em>This energy will be equal to the work done by the kinetic friction to stop it.</em></u>




<em>is the total distance does it travel before stopping.</em>
11 major systems are in the human body