The rock cycle is a basic concept in geology that describes the time-consuming transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. As the adjacent diagram illustrates, each of the types of rocks is altered or destroyed when it is forced out of its equilibrium conditions. An igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and are forced to change as they encounter new environments. The rock cycle is an illustration that explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.
Plate movements drive the rock cycle by pushing rocks back into the mantle, where they melt and become magna again. Plate movements also cause the folding, faulting and uplift of the crust that move rocks through the rock cycle.
sources: wikapedia, Harmonybaddie on brainly
Answer:
a) f ’’ = f₀
, b) Δf = 2 f₀ 
Explanation:
a) This is a Doppler effect exercise, which we must solve in two parts in the first the emitter is fixed and in the second when the sound is reflected the emitter is mobile.
Let's look for the frequency (f ’) that the mobile aorta receives, the blood is leaving the aorta or is moving towards the source
f ’= fo
This sound wave is reflected by the blood that becomes the emitter, mobile and the receiver is fixed.
f ’’ = f’
where c represents the sound velocity in stationary blood
therefore the received frequency is
f ’’ = f₀
let's simplify the expression
f ’’ = f₀ \frac{c+v}{c-v}
f ’’ = f₀
b) At the low speed limit v <c, we can expand the quantity
(1 -x)ⁿ = 1 - x + n (n-1) x² + ...
f ’’ = fo
f ’’ = fo 
leave the linear term
f ’’ = f₀ + f₀ 2
the sound difference
f ’’ -f₀ = 2f₀ v/c
Δf = 2 f₀ 
After impact velocity = 14.968 ft/s
Weight and mass of Bullet and wooden block:
Bullet: w = 1oz = 1/16 lb m = 0.001941 lb
wooden block : W = 5lb M = 0.15528 lb
velocity of block and bullet immediately after impact:
Σmv1 + ΣImp = mv2
Resolving vertical component
( m× v₀cos30⁰) + 0 = ( m+M) v'
v' = ( m× v₀cos30⁰)/ (m+M)
v' = 14.968 ft/s
Horizontal and vertical component of the impulse exerted by block on the bullet:
Here we will apply the principle of impulse and momentum.
Horizontal component:
-mv₀ cos30⁰ + RxΔt =0
RxΔt = mv₀sin30⁰
= 0.001941 × 1400sin30⁰
RxΔt = 1.3587 lb.s
Vertical component:
-mv₀cos30⁰ + RyΔt = -mv'
RyΔt = m( v₀cos30⁰-v')
RyΔt = 0.001941(1400cos30⁰ - 14.968)
= 2.32 lb.s
Learn more about impact here:
brainly.com/question/15008937
#SPJ4
To solve this problem, we will apply the concepts related to the kinematic equations of linear motion, which define speed as the distance traveled per unit of time. Subsequently, the wavelength is defined as the speed of a body at the rate of change of its frequency. Our values are given as,



Velocity of the wave,



Wavelength of the wave,




Therefore the wavelength of the waves on the string is 11.53 cm