Answer:
Explained
Explanation:
Resistance R in a current flow through an object is given by

ρ = resistivity of the material
L= length of the object
A= area of cross section
clearly resistance is directly dependent on length of the object.This means greater the length larger will be resistance to current.
thermal resistance R_th is given by

L= length of the object
A= area of cross section
K = Conductivity of the material
thermal resistance is also is directly dependent on length of the object.This means greater the length larger will be resistance to current.
I would say that I and IV because summer is I and fall is IV
Answer:
(A). The order of the bright fringe is 6.
(B). The width of the bright fringe is 3.33 μm.
Explanation:
Given that,
Fringe width d = 0.5 mm
Wavelength = 589 nm
Distance of screen and slit D = 1.5 m
Distance of bright fringe y = 1 cm
(A) We need to calculate the order of the bright fringe
Using formula of wavelength


Put the value into the formula


(B). We need to calculate the width of the bright fringe
Using formula of width of fringe

Put the value in to the formula



Hence, (A). The order of the bright fringe is 6.
(B). The width of the bright fringe is 3.33 μm.
Answer:
5.571 sec
Explanation:
angular frequency = √ (k/m) = √ (49.3 / 5) = 3.14 rad/s
Period To = 2π / angular frequency
Period To = 2π/3.14 = 2 × 3.14 / 3.142 = 2.00 sec which you got
T measured by the observer = To / (√ (1 - (v²/c²))) = 2 / √( 1 - 0.871111) = 2 / 0.35901 = 5.571 sec
t=2.00/(1-√((2.80*10^8)^2/(3.00*10^8)^2))= should have been ( To / (√ (1 - (v²/c²))). where To = 2.00 sec
Answer:The net force on the block is zero.
Explanation:
Given
Block is being pulled upward along an inclined surface at a constant speed
As speed is constant and moved in a straight line along the plane therefore its velocity is also constant .
and change in velocity is equal to acceleration therefore acceleration is zero here i.e. net force is zero acting on the body.