Answer:
a. ρ
b. 
Explanation:
a. To find the density of magnetic field given use the gauss law and the equation:
,
,
Ω,
,
, 
ρ
ρ
ρ
ρ
b. The electric field can be find using the equation:




Dispersion-Distributing something over an area.Diffusion-the scattering of light by reflection from a rough surface.
Refraction-<span>Turning or bending of any wave.</span>
Reflection- Image.
<span>k = 1.7 x 10^5 kg/s^2
Player mass = 69 kg
Hooke's law states
F = kX
where
F = Force
k = spring constant
X = deflection
So let's solve for k, the substitute the known values and calculate. Don't forget the local gravitational acceleration.
F = kX
F/X = k
115 kg* 9.8 m/s^2 / 0.65 cm
= 115 kg* 9.8 m/s^2 / 0.0065 m
= 1127 kg*m/s^2 / 0.0065 m
= 173384.6154 kg/s^2
Rounding to 2 significant figures gives 1.7 x 10^5 kg/s^2
Since Hooke's law is a linear relationship, we could either use the calculated value of the spring constant along with the local gravitational acceleration, or we can simply take advantage of the ratio. The ratio will be both easier and more accurate. So
X/0.39 cm = 115 kg/0.65 cm
X = 44.85 kg/0.65
X = 69 kg
The player masses 69 kg.</span>
Answer:
K.E = 1.28 × 10^-17 KeV
Explanation:
Given that a particle accelerator at CERN can accelerate an electron through a potentialdifference of 80 kilovolts.
To Calculate the kinetic energy (in keV) of the electron, let us first find the electron charge which is 1.60 × 10^-19C
The kinetic energy = work done
K.E = e × kV
Substitute e and the voltage into the formula
K.E = 1.60 × 10^-19 × 80
K.E = 1.28 × 10^-17 KeV
Therefore, the kinetic energy is approximately equal to 1.28 × 10^-17 KeV
Answer:
Je ne Sachez que Qu’est-ce que le