Answer:
B
Explanation:
because kinetic energy is directly proportional to temperature so the hottor the object, the more kinetic energy.
The force required to start an object sliding across a uniform horizontal surface is larger than the force required to keep the object sliding at a constant velocity once it starts.
The magnitudes of the required forces are different in these situations because the force of kinetic friction is less than the force of static friction. <em>(d)</em>
Yes because the acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
In general, the Earth releases energy back to the atmosphere through reflection, evaporation, and radiation. The Earth gets energy from the sunlight, part of which it absorbs, while part it reflects backwards, thus giving energy to the atmosphere. Also, the heating up of the Earth by the absorbed sunlight, radiates back in the lower layers of the atmosphere, again giving back energy to it. The water vapor is another way in which the Earth gives back energy tot he atmosphere as through the evaporation, the water vapor gets into the lower parts of the atmosphere and gives energy to it.