The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?
The carnot cycle attempts to model the most efficient possible process by avoiding irreversible processes.
In essence, the Carnot cycle is a reversible cycle made up of four other reversible processes. A reversible process is one that can be thought of as consisting of a sequence of equilibrium stages because it is carried out endlessly slowly.
Essentially, this means that any reversible cycle can be performed in reverse and that the amount of work or heat exchanged along the forward and backward pathways is the same.
It goes without saying that such reversible processes are not possible because they would take an unlimited amount of time. Therefore, the Carnot Engine is described as an idealized heat engine that uses the Carnot Cycle, a reversible cycle.
Learn more about carnot cycle here;
brainly.com/question/13040188
#SPJ4
Answer:
t=1.623 sec
Explanation:
The distance traveled before the echo is had is:

Given the speed of sound as v=345m/s, we use the speed equation to solve for t:

Hence, it takes 1.623 seconds to hear the echo.
<span>One end of a uniform meter stick is placed against a vertical wall. The other end is held by a lightweight cord that makes an angle, theta, with the stick. The coefficient of static friction between the end of the meter stick and the wall is 0.390. A. what is the maximum value...</span>
Answer:
Probably competition with television news-
by 1953 television was becoming common in many houses and people could obtain news from television newscasts