Answer:
The energies corresponding to each of the allowed orbitals are called energy levels.
Explanation:
A scientist known as Niels Bohr put forward that electrons in an atom covers some permitted orbitals with a specific energy. In other words, the energy of an electron in an atom is not continuous, but 'quantized.' The energies corresponding to each of the allowed orbitals are called energy levels.

Answer : 18.22 meters
Explanation:
1 yard. = 0.9144 meters
85.4 yards = 78.08976 meters
1 minute = 60 seconds
5 minutes = 300 seconds
Speed of Anisa = distance / time
Speed of Anisa = 78.08976 meters / 300 seconds
Speed of Anisa = 0.26029 meters / second.
Distance travelled in 70 seconds = speed * 70
Distance travelled in 70 seconds = 0.26029 * 70 = 18.22 meters
answer:They are too close to the sun!
Explanation:Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.Same with Venus!
Answer:
The correct answer is B
Explanation:
Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity
Φ
= ∫ E. dA =
/ ε₀
For this case we create a Gaussian surface that is a sphere. We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product
∫ E dA =
/ ε₀
The area of a sphere is
A = 4π r²
E 4π r² =
/ ε₀
E = (1 /4πε₀
) q / r²
Having the solution of the problem let's analyze the points:
A ) r = 3R / 4 = 0.75 R.
In this case there is no charge inside the Gaussian surface therefore the electric field is zero
E = 0
B) r = 5R / 4 = 1.25R
In this case the entire charge is inside the Gaussian surface, the field is
E = (1 /4πε₀
) Q / (1.25R)²
E = (1 /4πε₀
) Q / R2 1 / 1.56²
E₀ = (1 /4π ε₀
) Q / R²
= Eo /1.56
²
= 0.41 Eo
C) r = 2R
All charge inside is inside the Gaussian surface
=(1 /4π ε₀
) Q 1/(2R)²
= (1 /4π ε₀
) q/R² 1/4
= Eo 1/4
= 0.25 Eo
D) False the field changes with distance
The correct answer is B
The half life is 30 minutes.
30 mins- 1/2 left
60 mins- 1/4 left
90 mins- 1/8 left
120 mins- 1/16 left
120 mins= 2 hours