The answer is Condensing or condensation.
3.65. The mole ratio from the balanced equation is 2 moles CO2 : 2 moles CO. 2.
The ph of a saturated solution of Ca(OH)2 is 12.35
CALCULATION:
For the reaction
Ca(OH)2 → Ca2+ + 2OH-
we will use the Ksp expression to solve for the concentration [OH-] and then use the acid base concepts to get the pH:
Ksp = [Ca2+][OH-]^2
The listed Ksp value is 5.5 x 10^-6. Substituting this to the Ksp expression, we have
Ksp = 5.5 x 10^-6 = (s) (2s)^2 = 4s^3
s3 = 5.5x10^-6 / 4
Taking the cube root, we now have
s = cube root of (5.5x10^-6 / 4)s
= 0.01112
We know that the value of [OH-] is actually equal to 2s:
[OH-] = 2s = 2 * 0.01112 = 0.02224 M
We can now calculate for pOH:
pOH = - log [OH-]
= -log(0.02224)
= 1.65
Therefore, the pH is
pH = 14 - pOH
= 14 - 1.65
= 12.35
Answer: The dotted line shows a new potential energy diagram with a shorter activation energy hill than that in the original potential energy diagram.
Explanation:
Activation energy is the extra amount of energy required by the reactants to cross the energy barrier to get converted into products.
When a catalyst is added, it lowers down the activation energy which is shown by a dotted line. As now less energy is required, more of reactants can cross the energy barrier and get converted to products and thus increase the rate of reaction.
A catalyst increases the rate of reaction for both exothermic and endothermic reactions.