Answer:
minimum angle is 128.69°
Explanation:
given data
player velocity with respect ground v1 = 3.5 m/s
ball velocity with respect himself v2 = 5.6 m/s
to find out
smallest angle
solution
we know ball velocity with respect field will be
ball velocity = v1 +v2
ball velocity = 3.5 + 5.6 = 9.1m/s
we consider angle that player hit ball is θ
then by as per figure triangle
cosθ = 
cosθ = 
θ = 51.31
so minimum angle is 180 - 51.31 = 128.69°
Answer:
The frequency of the piano string is <em>1059 Hz</em>.
Explanation:
The frequency beat (fb), 2 beats/second, is the absolute difference between the frequency of the tuning fork (1056 Hz) and the frequency of the piano string.
As the piano string gets tightened, the frequency beat becomes 3 beats/second.
Therefore,
fb = 
Answer:
The options are not shown, so let's derive the relationship.
For an object that is at a height H above the ground, and is not moving, the potential energy will be:
U = m*g*H
where m is the mass of the object, and g is the gravitational acceleration.
Now, the kinetic energy of an object can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Now, when we drop the object, the potential energy begins to transform into kinetic energy, and by the conservation of the energy, by the moment that H is equal to zero (So the potential energy is zero) all the initial potential energy must now be converted into kinetic energy.
Uinitial = Kfinal.
m*g*H = (1/2)*m*v^2
v^2 = 2*g*H
v = √(2*g*H)
So we expressed the final velocity (the velocity at which the object impacts the ground) in terms of the height, H.
Answer:
I think it's the most important part in this
Answer: I don't know this one but I'm just came here for points
Explanation: