To solve this problem we will use the concepts related to Magnification. Magnification is the process of enlarging the apparent size, not physical size, of something. This enlargement is quantified by a calculated number also called "magnification".
The overall magnification of microscope is

Where
N = Near point
l = distance between the object lens and eye lens
= Focal length
= Focal of eyepiece
Given that the minimum distance at which the eye is able to focus is about 25cm we have that N = 25cm
Replacing,


Therefore the correct answer is C.
Answer:
Explanation:
Using the pythagoras theorem, the displacement is expressed as;
d² = x²+y²
y = 36m (north)
x = 20m east
Substitute;
d² = 36²+20²
d² = 1296+400
d² = 1696
d = √1696
d = 41.18m
For the direction;
theta = tan^-1(y/x)
theta = tan^-1(36/20)
theta = tan^-1(1.8)
theta = 60.95°
Hence the magnitude is 41.18m and the direction is 60.95°
W=gm
where g - gravitation
m - mass
w - weight
as gravitation equals to zero, multiplying by 0 gives W=0
It is not possible to tell whether and object is heavy or light
Answer:
The needed energy to melt of ice is 1670 J.
Explanation:
Given that,
Mass of ice = 5 g
Specific latent heat = 334000 J/kg
We need to calculate the energy
Using formula of energy

Where, m = mass
L = latent heat
Put the value into the formula


Hence, The needed energy to melt of ice is 1670 J.
Answer:

Explanation:
A force exerts work when there is a displacement of its point of application in the direction of that force. Therefore, the work done by a system is defined as the inner product between the applied force and the displacement:

In this case, we have:

So, replacing this:
