Answer:
Electric charge in the earth will be 
Explanation:
We have given that E = 116 N/C
Radius of the earth R = 6371 km = 6371000 m
We have to find the electric charge in the earth '
We know that electric field due to charge is given by
. here K is coulomb's constant
So 

So electric charge in the earth will be 
Many of today’s mathematicians use computers to test cases that are either too time-consuming or involve too many variables to test manually, allowing the exploration of theoretical issues that were impossible to test a generation ago.
Answer: Option A
<u>Explanation:</u>
One of the most useful inventions in scientific world are the computers. We can use different programming language and create programs in them. These programs help other to solve difficult problems. Most of the theoretical problems in science can be solved by using these programming features in computer within a specific time limit.
Otherwise, earlier mathematician used to take months to solve a complex mathematical problem manually, but now with the inclusion of computers, the mathematician can solve the problems containing more number of variables or other theoretical issues.
A map is almost always smaller than the place it describes. If a map of the US were drawn in its actual size, it would be 3,000 miles wide, and very difficult to fold. ... The scale of the map is the ratio of a distance on the map to the same distance on the real thing. ... If the map scale is 1 : 50000, then 1 foot on the map shows things that are actually spread over 50000 feet in the real city or field.
Answer:
Yes. Towards the center. 8210 N.
Explanation:
Let's first investigate the free-body diagram of the car. The weight of the car has two components: x-direction: towards the center of the curve and y-direction: towards the ground. Note that the ground is not perpendicular to the surface of the Earth is inclined 16 degrees.
In order to find whether the car slides off the road, we should use Newton's Second Law in the direction of x: F = ma.
The net force is equal to 
Note that 95 km/h is equal to 26.3 m/s.
This is the centripetal force and equal to the x-component of the applied force.

As can be seen from above, the two forces are not equal to each other. This means that a friction force is needed towards the center of the curve.
The amount of the friction force should be 
Qualitatively, on a banked curve, a car is thrown off the road if it is moving fast. However, if the road has enough friction, then the car stays on the road and move safely. Since the car intends to slide off the road, then the static friction between the tires and the road must be towards the center in order to keep the car in the road.
Answer:
The difference lies in the planets' respective magnetic fields, because while Earth's magnetism comes from within, Mars' does not. Earth's magnetism comes from its core, where molten, electrically conducting iron flows beneath the crust. Its magnetic field is global, meaning it surrounds the entire planet
Explanation:
thanks for question