The speed of the cart after 3 seconds of Low fan speed is equal to 54 cm/s.
<h3>How to calculate the speed?</h3>
Mathematically, speed can be calculated by using this formula;
Speed = distance/time
At Low fan speed after 3 seconds, the distance covered is 162 cm:
Speed = 162/3
Speed = 54 cm/s.
At Medium fan speed after 5 seconds, the distance covered is 600 cm:
Speed = 600/5
Speed = 120 cm/s.
At High fan speed after 2 seconds, the distance covered is 128 cm:
Speed = 128/2
Speed = 64 cm/s.
Read more on speed here: brainly.com/question/17350470
#SPJ1
Digital media<span> are any </span>media<span> that are encoded in machine-readable formats. </span>
Answer:
Acid mine drainage is dissolved toxic materials wash from mines into nearby lakes and streams.
Explanation:
Acid mine drainage is the flow of acidic water with pH typically between 2 and 4, and high concentrations of other dissolved toxic materials from mines into nearby lakes and streams. It mainly occurs during metal sulfide mining, when the metal sulfide ore such as pyrite (FeS2) is exposed to water and oxygen from air to produce soluble iron and sulfuric acid.
Microorganisms, especially acidophile bacteria like Acidithiobacillus ferrooxidans grow by pyrite oxidation, i.e., oxidizing the Fe²⁺ in pyrite to Fe³⁺, which again react with pyrite and water to produce sulfuric acid. Then the acidic water flows into nearby water sources and reduces the pH value of water in those sources. As a result, heavy metals such as copper, lead, mercury, etc in other mineral ores also get dissolved into the water. The action of acidophile bacteria also increases the rate and degree of acid-mine drainage process.
The acid mine drainage causes water pollution and adversely affect the aquatic plants and animals. It also results in the contamination of drinking water, corrosion of infrastructures such as bridges, etc.
Liquid and solid water were not in the giant gas cloudr
Answer:
Newton's Second Law tells us that the more mass an object has, the more force is needed to move it. A larger rocket will need stronger forces (eg. more fuel) to make it accelerate. The space shuttles required seven pounds of fuel for every pound of payload they carry.
Explanation: