Answer:
(a) 1 : 2
(b) same
Explanation:
Let the mass of puck A is m and the mass of puck B is 2 m.
initial speed for both the pucks is same as u and the distance is same for both is s.
let the tension is T for same.
The kinetic energy is given by

(a) As the speed is same, so the kinetic energy depends on the mass.
So, kinetic energy of A : Kinetic energy of B = m : 2m = 1 : 2
(b) A the distance s same so the final velocities are also same.
Answer:
The speed of sound is affected by temperature and humidity. Because it is less dense, sound passes through hot air faster than it passes through cold air. ... The attenuation of sound in air is affected by the relative humidity. Dry air absorbs far more acoustical energy than does moist air.
Position of B :
x = 4.66*cos 30 = 4.036
y = 3-4.66*sin 30 = 3-2.33 = 0.67
BC = √y^2+(x-1)^2 = √0.67^2+3.036^2 = 3.109
heading = arctan y/(x-1) = arctan 0.67/(3.036) = 12.44° south of west
hope this helps :)
Answer:
5 L
Explanation:
Ideal gas law:
PV = nRT
If P, n, and R are constant, then:
n₁R/P₁ = n₂R/P₂
Using ideal gas law, we can rewrite this as:
V₁/T₁ = V₂/T₂
This is known as Charles' law.
Plugging in values:
10 L / 546 K = V / 273 K
V = 5 L
Answer:
10 watts
Explanation:
first calculate work.
Work =force×distance cos thita
10Kg×0.50M cos 0= 5joules
Therefore, Power=Work÷ Time
Therefore, 5joules÷0.50s=10 watts.