Try to untie the knot from the balloon let some air out and tie if back....
-173.15
-0.15
-267.15
416.15
846.15
assuming k is kelvins and c is celsius
Three
Ammonia, NH3, is a chemical compound composed of one nitrogen atom and three hydrogen atoms.
Answer:
D.) Nitrogen and Hydrogen are very stable bonds compared to the bonds of ammonia.
Explanation:
For the reaction:
3H₂(g) + N₂(g) → 2NH₃(g)
The enthalpy change is ΔH = -92kJ
This enthalpy change is defined as the enthalpy of products - the enthalpy of reactants. As the enthalpy is <0, The enthalpy of products is <em>lower </em>than the enthalpy of reactants.
Also, it is possible to obtain the enthalpy change from the bond energies of products - bond energies of reactants, thus, The total bond energies of products are <em>lower</em> than the total bond energies of reactants.
The rate of the reaction couldn't be determined using ΔH.
As the bond energy of ammonia is lower than bonds of nitrogen and hydrogen, <em>D. Nitrogen and Hydrogen are very stable bonds compared to the bonds of ammonia.</em>
I hope it helps!
Answer:
c) There are sharp emission lines demonstrating discrete energy levels.
Explanation:
When an element emits energy in the form of radiation, it produces a spectrum of colors on a photographic plate. This spectrum can either be continuous or discrete. In continuous spectrum the spectrum continues without any discrimination between two regions. This represents the continuous emission of radiation, and thus the continuous emission of energy without any break.
On the other hand, the line spectrum consists of discrete and sharp lines, which shows the emission of radiation in a certain amount in a certain time, with a break between emission. Hence, the line spectra supports the quantization of energy.
The correct option is:
<u>c) There are sharp emission lines demonstrating discrete energy levels.</u>