Answer:

Explanation:
It often helps to write the heat as if it were a reactant or a product in the thermochemical equation.
Then you can consider it to be 11018 "moles" of "kJ"
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
M_r: 32.00
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 8H₂O + 11 018 kJ
n/mol: 7280
1. Moles of O₂
The molar ratio is 25 mol O₂:11 018 kJ

2. Mass of O₂

The answer is Solid.
This is on account of the substances that develop a solid are packed in a settled, firmly pressed geometric plan.
The atomic structure of the atom contains 9 positively charged particles (protons) and 10 neutrally charged particles (neutrons) in the center of the atom in a clump called the nucleus. Those 9 negatively charged particles (electrons) are moving around outside of the nucleus.
There are 10 neutral charges, because the mass of 19 comes from the number of neutral charges plus the number of positive charges.
To calculate the number of neutral charges, subtract the positive charges from the mass (19 - 9), and you get the number of neutral charges (10).
Use the ideal gas law:
PV = nRT
so, T = PV / nR
n=0.5
V= 120 dm^3 = 120 L (1 dm^3 = 1 L)
R = 1/12
P = 15,000 Pa = 0.147 atm (1 pa = 9.86 10^{-6} )
Put the values:
T = PV / nR
T = (0.147) (120) / (0.5) (1/12)
T= 426 K