Answer:
A planet's <u>hydrosphere</u> can be<u> liquid</u>, <u>vapor</u>, or <u>ice</u>. On Earth, in the places at the <u>north and south pole</u>, water exists in ice or glacier form, in the <u>atmosphere</u> it exists in vapor form and liquid water exists on the <u>surface</u> in the form of oceans, lakes and rivers. It also exists below ground as <u>groundwater</u>, in wells and aquifers. Water collects in clouds, then falls to Earth in the form of <u>rain or snow</u>,
<em>Hope it helps</em>
<em>:D</em>
<em />
Answer:
Explanation:
The formula of the reaction:
KClO₂ → KCl + O₂
To assign oxidation numbers, we have to obey some rules:
- Elements in an uncombined state or one whose atoms combine with one another to form molecules have an oxidation number of zero.
- The charge on simple ions signifies their oxidation number.
- The algebraic sum of all the oxidation number of all atoms in a neutral compound is zero. For radicals with charges, their oxidation number is the charge.
The oxidation number of K in KClO₂:
K + (-1) + 2(-2) = 0
K-5 = 0
K = +5
The oxidation number of K in KCl:
K + (-1) = 0
K = +1
The oxidation number Cl in KClO₂ is -1
For Cl in KCl, the oxidation number is -1
For O in KClO₂, the oxidation number is (2 x -2) = -4
For O in O₂, the oxidation number is 0
K moves from an oxidation state of +5 to +1. This is a gain of electrons and K has undergone reduction. We then say K is reduced.
O moves from an oxidation state of -4 to 0. This is a loss of electrons and O has undergone oxidation. We say O is oxidized.
The answer would for sure be 178 because acid & base make that amount so yea!! I’m talllyyy right
The answer is "night sky"
hope i helped :)
Answer:
The molarity of the solution is 7.4 mol/L
Explanation:
From the question above
0.400 ml of water contains 1.00 g of hydrochloride form of cocaine
Therefore 1000 ml of water will contain x g of hydrochloride form of cocaine
x = 1000 / 0.400
x = 2500 g
2500g of hydrochloride form of cocaine is present in 1000 ml of water.
Mole of hydrochloride form of cocaine = mass /molar mass of hydrochloride
Mole of hydrochloride form of cocaine = 2500/339.8
= 7.4 mol
Molarity = mol/ volume in liter (L)
molarity = 7.4 /1
Molarity = 7.4 mol/L