Answer:
Explanation:
The formula for this is
where F is the gravitational force, G is the gravitational constant, m1 is the mass of one object and m2 is the mass of the other object. We are looking for r, the distance between the centers of their masses.
Filling in:
and moving things around to solve for r:
Doing all that and rounding to the 3 sig fig's you need gives us a distance of 1.55 m
Answer:
When an electromagnetic wave passes from space to matter, some part of the energy is absorbed by the matter and it increases its energy. The wave may reflect and some part may pass through the matter depending on the amount of energy they have. The amplitude of the wave decreases if some parts of it are reflected.
<span>5.82 x 10-49 joules7.62 x 10-19 joules8.77 x 10-12 joules1.09 x 10-12<span> joules </span><span>answer is b</span></span>
Air can go in any direction. . .
Answer:
6 month interval
Explanation:
The distance to a nearby star in theory is more simple than
one might think! First we must learn about the parallax effect. This is the mechanism our eyes use to perceive things at a distance! When we look at the star from the earth we see it at different angles throughout the earth's movement around the sun similar to how we see when we cover on eye at a time. Modern telescopes and technology can help calculate the angle of the star to the earth with just two measurements (attached photo!) Since we know the distance of the earth from the sun we can use a simple trigonometric function to calculate the distance to the star. The two measurements needed to calculate the angle of the star to the earth caused by parallax (in short angle θ) are shown in the second attached photo.
So using a simple trigonometric function
we can solve for d which is the distance of the earth to the star:

In the first attached photo a picture where r is the distance to the star and the base of the triangle is the diameter of the earth.