Answer:
The average force on ball by the golf club is 340 N.
Explanation:
Given that,
Mass of the golf ball, m = 0.03 kg
Initial speed of the ball, u = 0
Final speed of the ball, v = 34 m/s
Time of contact, 
We need to find the average force on ball by the golf club. We know that the rate of change of momentum is equal to the net external force applied such that :

So, the average force on ball by the golf club is 340 N.
The correct answers are as follows:
<span>1) hydrogenous sediment
2)sand and gravel
3) They rapidly break down at surface temperatures and pressures.</span>
Answer:
v = 87.57 m/s
Explanation:
Given,
The initial velocity of the car, u = 0
The final velocity of the car, v = 60 mi/hr
The time period of car, t = 8 s
= 0.00222 hr
The acceleration of the car is given by the formula,
a = (v -u) / t
= 60 / 0.00222
= 27027 mi/hr²
If the car has initial velocity, u = 50 mi/hr
The time period of the car, t = 5.0 s
= 0.00139 hr
Using first equations of motion
<em> v = u + at</em>
= 50 + (0.00139 x 27027)
= 87.57 mi/hr
Hence, the final velocity of the car, v = 87.57 mi/hr
Answer:
The balanced equation is 3NaBr+1H3PO4 ----> 1Na3PO4 + 3HBr
This is a double replacement because you are switching both the Na and the Hydrogen.
Explanation: