W = mg, Assuming g ≈ 9.8 m/s² on the earth surface.
735 N = m* 9.8
735/9.8 = m
75 = m
Mass , m = 75 kg. B.
From tables, the speed of sound at 0°C is approximately
V₁ = 331 m/s (in air)
V₃ = 5130 m/s (in iron)
Distance traveled is
d = 100 km = 10⁵ m
Time required to travel in air is
t₁ = d/V₁ = 10⁵/331 = 302.12 s
Time required to travel in iron is
t₂ = d/V₂ = 10⁵/5130 = 19.49 s
The difference in time is
302.12 - 19.49 = 282.63 s
Answer: 283 s (nearest second)
Answer:
D physiological condition
Explanation:
Sensation and perceptions are complimentary to each other but have different roles within the brain. Sensations are the process of experiencing the world with the five senses and sending that information to the brain. Perceptions are the way we interpret sensations.
The solution would be like
this for this specific problem:
<span>5.5 g = g + v^2/r </span><span>
<span>4.5 g =
v^2/r </span>
<span>v^2 = 4.5
g * r </span>
<span>v = sqrt
( 4.5 *9.81m/s^2 * 350 m) </span>
v = 124
m/s</span>
So the pilot will black out for this dive at 124
m/s. I am hoping that these answers have satisfied your query and it
will be able to help you in your endeavors, and if you would like, feel free to
ask another question.
For a current-carrying wire running perpendicular to a magnetic field, the magnetic force acting on the wire is given by:
F = ILB
F = magnetic force, I = current, L = wire length, B = magnetic field strength
Given values:
F = 0.60N, L = 1.0m, B = 0.20T
Plug in and solve for I:
0.60 = I(1.0)(0.20)
I = 3.0A