A) average acceleration = final velocity - initial velocity / time
= 7700 - 0 / 11
= 700ms^-2
B) force = mass x acceleration
= (3.05 x 105) x 700
= 320.25 x 700
= 224,175N
Answer:
t=240s
Explanation:
Distance=120m
Acceleration=-5m/s^2
v=0
Let u=x m/s
Using equation v^2-u^2=2as:-
0-x=2(-5)(120)
-x=-1200
x=1200m/s
Using now equation v=u+at:-
0=1200+-5t
5t=1200
t=240s
Answer:
Fnet = 0
Explanation:
- Since the block slides across the floor at constant speed, this means that it's not accelerated.
- According Newton's 2nd Law, if the acceleration is zero, the net force on the sliding mass must be zero.
- This means that there must be a friction force opposing to the horizontal component of the applied force, equal in magnitude to it:

- In the vertical direction, the block is not accelerated either, so the sum of the normal force and the vertical component of the applied force, must be equal in magnitude to the force of gravity on the block:

⇒ 169 N + Fn = Fg = 216 N (3)
- This means that there must be a normal force equal to the difference between Fappy and Fg, as follows:
- Fn = 216 N - 169 N = 47 N (4)
Answer:
charge flowing in the copper wire is 
Explanation:
We have given current i = 2.35 A
Time through which charge is charge is transferred 
We have to find the charge flowing in this time
We know that charge is given by Q = i×t , here i is current and t is time
So charge = 
So charge flowing in the copper wire is 
Answer:

Explanation:
The mechanical work done by the load placed on a fiber if the fiber deforms by 3 nano-meter can be given in relation to the energy stored in a stretched fiber.
- We know according to the Hooke's law within the elastic limit the stress is directly proportional to the strain. The constant introduced is called stiffness constant defined as the magnitude of load applied for the deformation of one unit in the dimension of the object.
<u>The energy stored in a stretched fiber is equal to the work done:</u>

where:
k = stiffness constant
deformation in the fiber = 
