1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LiRa [457]
3 years ago
12

Uncle Fester's CD's

Physics
1 answer:
MrRissso [65]3 years ago
3 0

Answer: hey

Explanation:

You might be interested in
A 2 N and an 8 N force pull on an object to the right and a 4 N force pulls on the same object to the left. If the object has a
Elden [556K]

Answer:

a = 12 [m/s²]

Explanation:

To solve this problem we must use Newton's second law which tells us that the sum of forces on a body is equal to the product of mass by acceleration.

ΣF = m*a

where:

ΣF = sum of forces acting on a body [N] (units of Newtons)

m = mass = 0.5 [kg]

a = acceleration [m/s²]

Let's take the direction of positive forces to the right and negative forces directed to the left

2 + 8 - 4 = 0.5*a

6 = 0.5*a

a = 12 [m/s²]

7 0
3 years ago
A 5cm object is located 12 cm from a convex mirror with a focal length of 14cm. Calculate the
Tema [17]

Answer:

-86.415485655

Explanation:

3 0
3 years ago
A rigid adiabatic container is divided into two parts containing n1 and n2 mole of ideal gases respectively, by a movable and th
kicyunya [14]

Answer:

Explanation:

Given

Pressure, Temperature, Volume of gases is

P_1, V_1, T_1 & P_2, V_2, T_2

Let P & T be the final Pressure and Temperature

as it is rigid adiabatic container  therefore Q=0 as heat loss by one gas is equal to heat gain by another gas

-Q=W+U_1----1

Q=-W+U_2-----2

where Q=heat loss or gain (- heat loss,+heat gain)

W=work done by gas

U_1 & U_2 change in internal Energy of gas

Thus from 1 & 2 we can say that

U_1+U_2=0

n_1c_v(T-T_1)+n_2c_v(T-T_2)=0

T(n_1+n_2)=n_1T_1+n_2T_2

T=\frac{n_1+T_1+n_2T_2}{n_1+n_2}

where n_1=\frac{P_1V_1}{RT_1}

n_2=\frac{P_2V_2}{RT_2}

T=\frac{\frac{P_1V_1}{RT_1}\times T_1+\frac{P_2V_2}{RT_2}\times T_2}{\frac{P_1V_1}{RT_1}+\frac{P_2V_2}{RT_2}}

T=\frac{P_1V_1+P_2V_2}{\frac{P_1V_1}{T_1}+\frac{P_2V_2}{T_2}}

and P=\frac{P_1V_1+P_2V_2}{V_1+V_2}

6 0
3 years ago
A flat uniform circular disk (radius = 2.30 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the
Vadim26 [7]

The resulting angular speed = 0.6 rad / s.

<u>Explanation:</u>

Here there is no external torque acting on the system thus we can apply the law of conservation of angular  momentum  

Angular momentum of the man = Iω

Where I = Inertia of the man about the axis of rotation

or         I = M r 2

            I  = 50 * 1.25*1.25 = 78.125

w = Angular velocity of the man, that can be calculated as follows

Tangential velocity of man = v = 2m/s  

So time taken to describe this circle is t = (2*pi* r) / v

Now angle described in 1 revolution θ = 2*pi radians

This angle is subtended in time t = (2*pi* r) / v

Thus angular speed = w = θ/t = 2*pi* ( v/ 2π r) = v/r = 2.70 / 1.25 = 2.16 rad/s

So angular momentum of man = Iw = 78.125 * 2.16 = 168.75.

To conserve the angular momentum before and after,

Angular momentum of disk = angular momentum of the man  

           i.e.             Iw of disk = 168.75

                                disk of I = (disk of M*R^2) / 2

                                              = (1.00 * 102 * 2.30 * 2.30) / 2

                                              = 269.79

                 Thus 269.79 of disk of w = 168.75

      Resulting angular speed of disk = 168.75 / 269.79 = 0.6 ras / s

7 0
3 years ago
A seagull flying horizontally at 8.00m/s carries a clam with a mass of 300g in its beak. Calculate the total mechanical energy o
Stells [14]

Answer:

9.6J+88.2J=97.8J

Explanation:

Here the velocity of the seagull is given,mass is given and its height.

We have to find its mechanical energy my friend.

Mechanical energy=kinetic energy + potential energy.

First we will find kinetic energy.

For calculating kinetic energy we need mass and velocity,which are given here.

So, Ek=

1 \div 2mv {?}^{2}

So by substituting the values we get 9.6J.

Now we find the potential energy which is mgh.

By substituting the values we get 88.2J.

Then we add both of those and get 97.8J

I hope this satisfies you and make sure you contact me if it doesn't

7 0
3 years ago
Other questions:
  • The base si unit for electric is the
    11·1 answer
  • F = ma
    13·2 answers
  • 5 Ohm 3 Ohm 2 Ohm R=?​
    6·1 answer
  • Electromagnetic radiation can be specified by its wavelength ( ), its frequency ( ) or its period ( ). The period is the time it
    9·1 answer
  • A squirrel runs along an overhead telephone wire that stretches from the top of one pole to the next. It is initially at positio
    11·1 answer
  • When two ocean plates come together, one ocean plate __________________
    13·1 answer
  • What is the relation between liquid pressure and density of liquid<br><br><br>plzz fast ​
    8·2 answers
  • 2 Here are some numbers: 22 23 25 27 29 ܕ ST From the list, write down all of the prime numbers .
    7·1 answer
  • Which change to an object would reduce its kinetic energy by half
    6·1 answer
  • An m = 7.25 kg mass is suspended on a string which is pulled upward by a force of F = 76.7 N as shown in the figure. If the upwa
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!