Answer:
C. molecules speed up as more thermal energy is added
Explanation:
The molecules will simply speed up as more thermal energy is added to the solid.
Thermal energy is a form of kinetic energy which is set in motion.
- Heat causes kinetic energy build up in a body.
- As the molecules of the solid gains heat, they will continue to increase in thermal energy.
- They are forced to start vibrating about their fixed point.
- Thereafter, when they have enough energy, they break free from the forces holding them.
- Therefore, they move from a state of rest to one with a very high kinetic energy where the molecules moves rapidly.
- This is why a solid will change to liquid and sometimes eventually gas
The answer is letter B. XD
Let's check the relationship


So
- Raindrops will fall faster . .
- Also walking on ground would become more difficult as g increases.
Option C is wrong by now .Let's check D once

- So time period of simple pendulum would decrease.
Potential energy = (weight) x (height)
After the car has been raised 2.5 meters, it has
(11,000) x (2.5) = 27,500 Joules
MORE potential energy than it had before it was lifted.
That's the energy that has to come from the work you do to lift it.
Since no mechanical process is ever 100% efficient, the work required
to accomplish this task is <em>at least 27,500 joules</em>.
We will apply the conservation of linear momentum to answer this question.
Whenever there is an interaction between any number of objects, the total momentum before is the same as the total momentum after. For simplicity's sake we mostly use this equation to keep track of the momenta of two objects before and after a collision:
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
Note that v₁ and v₁' is the velocity of m₁ before and after the collision.
Let's choose m₁ and v₁ to represent the bullet's mass and velocity.
m₂ and v₂ represents the wood block's mass and velocity.
The bullet and wood will stick together after the collision, so their final velocities will be the same. v₁' = v₂'. We can simplify the equation by replacing these terms with a single term v'
m₁v₁ + m₂v₂ = m₁v' + m₂v'
m₁v₁ + m₂v₂ = (m₁+m₂)v'
Let's assume the wood block is initially at rest, so v₂ is 0. We can use this to further simplify the equation.
m₁v₁ = (m₁+m₂)v'
Here are the given values:
m₁ = 0.005kg
v₁ = 500m/s
m₂ = 5kg
Plug in the values and solve for v'
0.005×500 = (0.005+5)v'
v' = 0.4995m/s
v' ≅ 0.5m/s