Compared to coffee at room temperature, the molecules of the coffee at 34°C will be moving faster and colliding with one another more frequently.
9.8m per seccond is the speed of gravity if you drop something like a ball from a tower
Answer:
Explanation:
When a body is held against a vertical wall , to keep them in balanced position , normal force is applied on their surface . this force creates normal reaction which acts against the normal force and it is equal to the normal force as per newton's third law . Ultimately friction force is created which is proportional to normal force and it acts in vertically upward direction . It prevents the body from falling down .
Hence normal force = reaction force .
From second law also net force is zero , so if normal force is N and reaction force is R
R - N = mass x acceleration = mass x 0 = 0
R = N .
Ranking normal force from highest to smallest
150 N , 130 N , 120 N
B )
Frictional force is equal to the weight of the body because the body is held at rest .
Ranking of frictional force form largest to smallest
7 kg , 5 kg , 3 kg , 1 kg .
Here frictional force is irrespective of the normal force acting on the body because frictional force adjusts itself so that it becomes equal to weight in all cases here because it always balances the weight of the body .
Answer: It indicates the speed of a object. The steeper the line the greater the speed of the object.
Answer:
I = Δq / t
Explanation:
The quantity of electricity i.e charge is related to current and time according to the equation equation:
Q = It
Δq = It
Where:
Q => is the quantity of electricity i.e charge
I => is the current.
t => is the time.
Thus, we can rearrange the above expression to make 'I' the subject. This is illustrated below:
Δq = It
Divide both side by t
I = Δq / t