Answer:
Chemical changes cause a substance to change into an entire substance with a new chemical formula. Chemical changes are also known as chemical reactions. The “ingredients” of a reaction are called reactants, and the results are called products.
Hope it helps
<u>Answer: </u>The correct statement is X is the effective nuclear charge, and it increases across a period.
<u>Explanation:</u>
We are given that:
X = number of protons − number of core electrons
Effective nuclear charge is defined as the actual nuclear charge (Z = number of protons) minus the screening effect caused by the electrons present between nucleus and valence electrons. These electrons are the core electrons.
The formula used for the calculation of effective nuclear charge given by Slater is:

where,
= effective nuclear charge
Z = atomic number or actual nuclear charge or number of protons
= Screening constant
The effective nuclear charge increases as we go from left to right in a period because nuclear charge increases with no effective increase in screening constant.
Hence, the correct answer is X is the effective nuclear charge, and it increases across a period.
Temperature change, colour change, releasing gas, bubbles and change in odor
Answer:
53.7 grams of HNO3 will be produced
Explanation:
Step 1: Data given
Mass of NO2 = 59.0 grams
Molar mass NO2 = 46.0 g/mol
Step 2: The balanced equation
3NO2 + H2O→ 2HNO3 + NO
Step 3: Calculate moles NO2
Moles NO2 = 59.0 grams / 46.0 g/mol
Moles NO2 = 1.28 moles
Step 4: Calculate moles HNO3
For 3 moles NO2 we need 1 mol H2O to produce 2 moles HNO3 and 1 mol NO
For 1.28 moles NO2 we'll have 2/3 * 1.28 =0.853 moles HNO3
Step 7: Calculate mass HNO3
Mass HNO3 = 0.853 moles * 63.01 g/mol
Mass HNO3 = 53.7 grams
53.7 grams of HNO3 will be produced
Answer : The energy released by an electron in a mercury atom to produce a photon of this light must be, 
Explanation : Given,
Wavelength = 
conversion used : 
Formula used :

As, 
So, 
where,
= frequency
h = Planck's constant = 
= wavelength = 
c = speed of light = 
Now put all the given values in the above formula, we get:


Therefore, the energy released by an electron in a mercury atom to produce a photon of this light must be, 