The best answer among the choices listed is the third option. The rate over the course of a reaction <span>decreases because the concentration of reactants decreases. As the concentration of the reactants decreases, there is less particles to form the products therefore less rate.</span>
The titrant for this exercise. suppose Ca(OH)₂ were used as the titrant, instead of NaOH. This will make the titrant twice as concentrated in hydroxide ion. the analyte will still be HC₂H₃O₂. the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
The balanced reaction of the given condition as follow :
Ca(OH)₂ + 2HC₂H₃O₂ ------> Ca(C₂H₃O₂)₂ + 2H₂O
from the equation it is clear that stoichiometry of Ca(OH)₂ is 1 and the stoichiometry of HC₂H₃O₂ is 2. therefore the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
Thus, The titrant for this exercise. suppose Ca(OH)₂ were used as the titrant, instead of NaOH. This will make the titrant twice as concentrated in hydroxide ion. the analyte will still be HC₂H₃O₂. the stoichiometry ratio of HC₂H₃O₂ to Ca(OH)₂ is 1 : 2.
To learn more about stoichiometry here
brainly.com/question/13145466
#SPJ4
Answer:
29.76ºC
Explanation:
The melting point is a physical property of the matter it doesn't change as you slice the gallium into three different parts. Thus, it's the same value 29.76ºC
Answer:
C or D
Explanation:
Hope it helped a little bit
Answer:
14 OH⁻(aq) + 2 Cr³⁺(aq) = Cr₂O₇²⁻(aq) + 7 H₂O(l) + 6 e⁻
Explanation:
In order to balance a half-reaction we use the ion-electron method.
Step 1: Write the half-reaction
Cr³⁺(aq) = Cr₂O₇²⁻(aq)
Step 2: Perform the mass balance, adding H₂O(l) and OH⁻(aq) where appropriate
14 OH⁻(aq) + 2 Cr³⁺(aq) = Cr₂O₇²⁻(aq) + 7 H₂O(l)
Step 3: Perform the electric balance, adding electrons where appropriate
14 OH⁻(aq) + 2 Cr³⁺(aq) = Cr₂O₇²⁻(aq) + 7 H₂O(l) + 6 e⁻