Answer:
A) t = 22.5 min and B) t = 29.94 min
Explanation:
Initial concentration, [A]₀ = 100
Final concentration = 100 -75 = 25
Time = 45 min
A) First order reaction
ln[A] − ln[A]₀ = −kt
Solving for k;
ln[25] − ln[100] = - 45k
-1.386 = -45k
k = 0.0308 min-1
How long after its start will the reaction be 50% complete?
Initial concentration, [A]₀ = 100
Final concentration, [A] = 100 -50 = 50
Time = ?
ln[A] − ln[A]₀ = −kt
Solving for k;
ln[50] − ln[100] = - 0.0308 * t
-0.693 = -0.0308 * t
t = 22.5 min
B) Zero Order
[A] = [A]₀ − kt
Using the values from the initial reaction and solving for k, we have;
25 = 100 - k(45)
-75 = -45k
k = 1.67 M min-1
How long after its start will the reaction be 50% complete?
Initial concentration, [A]₀ = 100
Final concentration, [A] = 100 -50 = 50
Time = ?
[A] = [A]₀ − kt
50 = 100 - (1.67)t
-50 = - 1.67t
t = 29.94 min
The answer is C, Uranium.
Natural gas, coal, and oil are all naturally made from fossils. Uranium is an element which can be found on the Periodic Table of Elements.
Answer: it is soluble
Explanation: nitrates are soluble.
The amount of heat required to convert H₂O to steam is : 382.62 kJ
<u>Given data :</u>
Mass of liquid water ( m ) = 150 g
Temperature of liquid water = 43.5°C
Temperature of steam = 130°C
<h3 /><h3>Determine the amount of heat required </h3>
The amount of heat required = ∑ q1 + q2 + q3 ----- ( 1 )
where ;
q1 = heat required to change Temperature of water from 43.5°C to 100°C . q2 = heat required to change liquid water at 100°C to steam at 100°C
q3 = heat required to change temperature of steam at 100°C to 130°C
M* S
*ΔT
= 150 * 4.18 * ( 100 - 43.5 )
= 35425.5 J
moles * ΔHvap
= (150 / 18 )* 40.67 * 1000
= 338916.67 J
M * S
* ΔT
= 150 * 1.84 * ( 130 -100 )
= 8280 J
Back to equation ( 1 )
Amount of heat required = 35425.5 + 338916.67 + 8280 = 382622.17 J
≈ 382.62 kJ
Hence we can conclude that The amount of heat required to convert H₂O to steam is : 382.62 kJ.
Learn more about Specific heat of water : brainly.com/question/16559442