Answer:
The answer is below
Explanation:
a) The initial velocity (u) = 24 m/s
We can solve this problem using the formula:
v² = u² - 2gh
where v = final velocity, g= acceleration due to gravity = 9.8 m/s², h = height.
At maximum height, the final velocity = 0 m/s
v² = u² - 2gh
0² = 24² - 2(9.8)h
2(9.8)h = 24²
2(9.8)h = 576
19.6h = 576
h = 29.4 m
b) The time taken to reach the maximum height is given as:
v = u - gt
0 = 24 - 9.8t
9.8t = 24
t = 2.45 s
The total time needed for the apple to return to its original position = 2t = 2 * 2.45 = 4.9 s
C. Thick wire and cold temperature.
Explanation:
The resistance of a wire is given by: R = (ρL)/A
where ρ is the resistivity of the material, L is the length of the wire, A is the cross-sectional area of the wire.
From the formula, we see that the thicker the wire, the larger A, therefore the smaller the resistivity. so, a thick wire will have lower resistivity.
Moreover, the resistance of a wire increases with the temperature. In fact, high temperatures mean more motion of the atoms/electrons inside the wire, so more resistance to the flow of current through it. Therefore, colder temperature means lower resistance.
So, the correct option is thick wire and cold temperature.
Matter, substance. Material howya call it.
C the third one i think good luck
Polarizing filters: used to show light has some properties of a wave in that way of property is that light can be thought of as traveling forward in waves, with the <span>wave. sorry if this is too late but google is good</span>