The answer is 12.36. hoped this helped!
Answer:
Total impulse =
= Initial momentum of the car
Explanation:
Let the mass of the car be 'm' kg moving with a velocity 'v' m/s.
The final velocity of the car is 0 m/s as it is brought to rest.
Impulse is equal to the product of constant force applied to an object for a very small interval. Impulse is also calculated as the total change in the linear momentum of an object during the given time interval.
The magnitude of impulse is the absolute value of the change in momentum.

Momentum of an object is equal to the product of its mass and velocity.
So, the initial momentum of the car is given as:

The final momentum of the car is given as:

Therefore, the impulse is given as:

Hence, the magnitude of the impulse applied to the car to bring it to rest is equal to the initial momentum of the car.
Explanation:
Given that,
Wavelength = 6.0 nm
de Broglie wavelength = 6.0 nm
(a). We need to calculate the energy of photon
Using formula of energy



(b). We need to calculate the kinetic energy of an electron
Using formula of kinetic energy


Put the value into the formula


(c). We need to calculate the energy of photon
Using formula of energy



(d). We need to calculate the kinetic energy of an electron
Using formula of kinetic energy


Put the value into the formula


Hence, This is the required solution.
Answer:
A. The target nucleus split into two nuclei, each with fewer nucleons than the original.
Explanation: