The state of matter with the slowest moving atoms is solid!
Hello! Your answer is C, one atom of iron and three atoms of chlorine.
In this case, there is some ambiguity with "Cl". It could be C + I, or Cl. (One being carbon + iodine and the other Chlorine). However, we can see that the only choice that mentions iodine states two atoms, which is incorrect, as if it was iodine, the 3 indicates that there would be three atoms.
Therefore, Cl must be chlorine. If you look at choice C, there are three atoms of chlorine, as indicated by the 3 at the end of the Cl. There is also one molecule of Fe, as there is no number at the end of it so there has to be only one.
B is not correct, as carbon would be only "C". A is not correct as a molecule is a collection of atoms bonded together, therefore, this compound could be named a molecule, but there are not multiple molecules inside this compound.
Hope this helps!
Answer:
for what school? It's different for all sadly :(
Explanation:
The most abundant element in the Sun and in the stars are hydrogen and helium. Like most of the stars, there is a spontaneous radioactive reaction happening in the Sun. Hydrogen is transformed into Helium. As long as the stars are young, the most abundant element is hydrogen.
Answer:
dipole-dipole forces, ion-dipole forces, higher molar mass, hydrogen bonding, stronger intermolecular forces
Explanation:
<em>1. H₂S and H₂Se exhibit the following intermolecular forces: </em><em>dipole-dipole forces </em><em>and </em><em>ion-dipole forces</em><em>.</em> These molecules have a bent geometry, thus, a dipolar moment which makes them dipoles. When they are in the aqueous form they are weak electrolytes whose ions interact with the water dipoles
<em>2. Therefore, when comparing H₂S and H₂Se the one with a </em><em>higher molar mass</em><em> has a higher boiling point.</em> In this case, H₂Se has a higher boiling point than H₂S due to its higher molar mass.
<em>3. The strongest intermolecular force exhibited by H₂O is </em><em>hydrogen bonding</em><em>. </em>This is a specially strong dipole-dipole interaction in which the positive density charge on the hydrogens is attracted to the negative density charge on the oxygen.
<em>4. Therefore, when comparing H₂Se and H₂O the one with </em><em>stronger intermolecular forces</em><em> has a higher boiling point. </em>That's why the boiling point of H₂O is much higher than the boiling point of H₂Se.