The formation of aspirin will proceed faster if acetic anhydride is used in place of acetic acid.
However, acetic anhydride will hydrolyze in the presence of water to form acetic acid, slowing down the reaction.
One mole of water weighs 18 grams. H₂O is composed of 2H= 2 and 1 0=16 adding gives you 18. number of moles= mass/ Relative Molecular Mass
Therefore, mass= Relative Molecular Mass×number of moles
= 18×5 moles
= 90 grams
Answer:
0.7561 g.
Explanation:
- The hydrogen than can be prepared from Al according to the balanced equation:
<em>2Al + 6HCl → 2AlCl₃ + 3H₂,</em>
It is clear that 2.0 moles of Al react with 6.0 mole of HCl to produce 2.0 moles of AlCl₃ and 3.0 mole of H₂.
- Firstly, we need to calculate the no. of moles of (6.8 g) of Al:
no. of moles of Al = mass/atomic mass = (6.8 g)/(26.98 g/mol) = 0.252 mol.
<em>Using cross multiplication:</em>
2.0 mol of Al produce → 3.0 mol of H₂, from stichiometry.
0.252 mol of Al need to react → ??? mol of H₂.
∴ the no. of moles of H₂ that can be prepared from 6.80 g of aluminum = (3.0 mol)(0.252 mol)/(2.0 mol) = 0.3781 mol.
- Now, we can get the mass of H₂ that can be prepared from 6.80 g of aluminum:
mass of H₂ = (no. of moles)(molar mass) = (0.3781 mol)(2.0 g/mol) = 0.7561 g.
Answer : The correct option is, (2) Energy is absorbed as bonds are broken.
Explanation :
As we know that the bonds are formed and breaks during the chemical reaction. Some energy is released or absorbed when the bonds are formed and breaks during the chemical reaction.
During the bond breaking, some energy is required to break the bonds.
During the bond formation, some energy is released to the formation of the bonds.
In the given reaction, the bond between the hydrogen-hydrogen in
are breaking into two hydrogen. That means during the bond breaking, some energy is required or absorbed to break the bonds.
Hence, the correct option is, (2) Energy is absorbed as bonds are broken.
Answer:
Cytoplasm
Explanation:
Organelles float around in the cell’s <u>Cytoplasm </u>
Hope this helps!