Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

Answer:
what is it on? like name one of the questions
Explanation:
Answer:
M
Explanation:
To apply the concept of <u>angular momentum conservation</u>, there should be no external torque before and after
As the <u>asteroid is travelling directly towards the center of the Earth</u>, after impact ,it <u>does not impose any torque on earth's rotation,</u> So angular momentum of earth is conserved
⇒
-
is the moment of interia of earth before impact -
is the angular velocity of earth about an axis passing through the center of earth before impact
is moment of interia of earth and asteroid system
is the angular velocity of earth and asteroid system about the same axis
let 
since 

⇒ if time period is to increase by 25%, which is
times, the angular velocity decreases 25% which is
times
therefore

(moment of inertia of solid sphere)
where M is mass of earth
R is radius of earth

(As given asteroid is very small compared to earth, we assume it be a particle compared to earth, therefore by parallel axis theorem we find its moment of inertia with respect to axis)
where
is mass of asteroid
⇒ 

=
+ 

⇒
