Diatomic molecules will be Nonpolar when they are composed of only one element.
Answer : The concentration of
at equilibrium is 0 M.
Solution : Given,
Concentration of
= 0.0200 M
Concentration of
= 1.00 M
The given equilibrium reaction is,
![Fe^{3+}(aq)+3C_2O_4^{2-}(aq)\rightleftharpoons [Fe(C_2O_4)_3]^{3-}(aq)](https://tex.z-dn.net/?f=Fe%5E%7B3%2B%7D%28aq%29%2B3C_2O_4%5E%7B2-%7D%28aq%29%5Crightleftharpoons%20%5BFe%28C_2O_4%29_3%5D%5E%7B3-%7D%28aq%29)
Initially conc. 0.02 1.00 0
At eqm. (0.02-x) (1.00-3x) x
The expression of
will be,
![K_c=\frac{[[Fe(C_2O_4)_3]^{3-}]}{[C_2O_4^{2-}]^3[Fe^{3+}]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5B%5BFe%28C_2O_4%29_3%5D%5E%7B3-%7D%5D%7D%7B%5BC_2O_4%5E%7B2-%7D%5D%5E3%5BFe%5E%7B3%2B%7D%5D%7D)

By solving the term, we get:

Concentration of
at equilibrium = 0.02 - x = 0.02 - 0.02 = 0 M
Therefore, the concentration of
at equilibrium is 0 M.
As you go down a group on the periodic table, atomic radii tend to increase because elements with larger atomic numbers have more occupied electron levels which take up more space surrounding the nucleus.
I hope this helps.
Answer:
Helum (He)g will escape faster
Explanation:
the phenomemenon can be explained by the Graham's law of diffusion.
Graham's law of difussion states that the rate of difussion is inversely proportional to the square root of the molecular mass,which means the gas with lower molecular mass will escape faster.
Helium gas has a molecular mass of 4 while Neon has a molecular mass of 10.
rate of diffusion of He/rate of difussion of Ne=√4/10=√0.4=0.63
It means He(g) will move 0.63 times faster than Ne(g) under the same condition
Answer is: 2,0,0,±1/2.
1) n = 1. The principal quantum number (n) is one of four quantum numbers which are assigned to each electron in an atom to describe that electron's state.
2) l = 0. The azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital.
3) ml = 0. Magnetic quantum number specify orientation of electrons in magnetic field and number of electron states (orbitals) in subshells.
Magnetic quantum number (ml) specifies the orientation in space of an orbital of a given energy and shape . Magnetic quantum number divides the subshell into individual orbitals which hold the electrons, there are 2l+1 orbitals in each subshell.
4) The spin quantum number, ms, is the spin of the electron; ms = +1/2 or -1/2.