1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondor19780726 [428]
3 years ago
10

A solid sphere is released from the top of a ramp that is at a height h1 = 2.30 m. It rolls down the ramp without slipping. The

bottom of the ramp is at a height of h2 = 1.69 m above the floor. The edge of the ramp is a short horizontal section from which the ball leaves to land on the floor. The diameter of the ball is 0.17 m.
Physics
1 answer:
Oksi-84 [34.3K]3 years ago
8 0

Answer:

The horizontal distance d does the ball travel before landing is 1.72 m.

Explanation:

Given that,

Height of ramp h_{1}=2.30\ m

Height of bottom of ramp h_{2}=1.69\ m

Diameter = 0.17 m

Suppose we need to calculate the horizontal distance d does the ball travel before landing?

We need to calculate the time

Using equation of motion

h_{2}=ut+\dfrac{1}{2}gt^2

t=\sqrt{\dfrac{2h_{2}}{g}}

t=\sqrt{\dfrac{2\times1.69}{9.8}}

t=0.587\ sec

We need to calculate the velocity of the ball

Using formula of kinetic energy

K.E=\dfrac{1}{2}mv^2+\dfrac{1}{2}I\omega^2

K.E=\dfrac{1}{2}mv^2+\dfrac{1}{2}\times(\dfrac{2}{5}mr^2)\times(\dfrac{v}{r})^2

K.E=\dfrac{7}{10}mv^2

Using conservation of energy

K.E=mg(h_{1}-h_{2})

\dfrac{7}{10}mv^2=mg(h_{1}-h_{2})

v^2=\dfrac{10}{7}\times g(h_{1}-h_{2})

Put the value into the formula

v=\sqrt{\dfrac{10\times9.8\times(2.30-1.69)}{7}}

v=2.922\ m/s

We need to calculate the horizontal distance d does the ball travel before landing

Using formula of distance

d =vt

Where. d = distance

t = time

v = velocity

Put the value into the formula

d=2.922\times 0.587

d=1.72\ m

Hence, The horizontal distance d does the ball travel before landing is 1.72 m.

You might be interested in
If the velocity of an object is doubled, its kinetic energy is ______
swat32
Increased by a factor of 4
4 0
3 years ago
Perform the following calculations and give your answer with the correct number of significant figures
love history [14]

Answer:

see below

Explanation:

a. 0.1886 x 12 =2.2632

This has 2 sig figures so the answer can only have 2 sig figures

2.3

b. 2.995 - 0.16685 =2.82815

The most accurate in the problem is to thousands place so our answer can only be accurate to the thousands place

2.828

c. 910 x 0.18945=172.3995

The  least number of significant figures is 3 so the answer can only have 3 significant figures

172

3 0
3 years ago
Would it be true that if you double the distance of an astronaut from a planet, the gravitational pull between them would be hal
velikii [3]

Answer:

Yes

Explanation:

Newton's law of universal gravitation is usually stated that every particle attracts every other particle in the universe with a force which is directly proportional to the product of their masses(m1 and m2) and inversely proportional to the square of the distance between their centers(r).

F = Gm1m2/r²

This is a general physical law derived from

empirical observations by what Isaac Newton called inductive reasoning.

when distance is doubled the gravitational force will be reduced by quarter not half.

5 0
3 years ago
Read 2 more answers
6) Find the speed a spherical raindrop would attain by falling from 4.00 km. Do this:a) In the absence of air dragb) In the pres
sleet_krkn [62]

We are asked to determine the velocity of a rain drop if it falls from 4 km.

To do that we will use the following formula:

2ah=v_f^2-v_0^2

Where:

\begin{gathered} a=\text{ acceleration} \\ h=\text{ height} \\ v_f,v_0=\text{ final and initial velocity} \end{gathered}

If we assume the initial velocity to be 0 we get:

2ah=v_f^2

The acceleration is the acceleration due to gravity:

2gh=v_f^2

Now, we take the square root to both sides:

\sqrt{2gh}=v_f

Now, we substitute the values:

\sqrt{2(9.8\frac{m}{s^2})(4000m)}=v_f

solving the operations:

280\frac{m}{s}=v

Therefore, the velocity without air drag is 280 m/s.

Part B. we are asked to determine the velocity if there is air drag. To do that we will use the following formula:

F_d=\frac{1}{2}C\rho_{air}Av^2

Where:

\begin{gathered} F_d=drag\text{ force} \\ C=\text{ constant} \\ \rho_{air}=\text{ density of air} \\ A=\text{ area} \\ v=\text{ velocity} \end{gathered}

We need to determine the drag force. To do that we will use the following free-body diagram:

Since the velocity that the raindrop reaches is the terminal velocity and its a constant velocity this means that the acceleration is zero and therefore the forces are balanced:

F_d=mg

Now, we determine the mass of the raindrop using the following formula:

m=\rho_{water}V

Where:

\begin{gathered} \rho_{water}=\text{ density of water} \\ V=\text{ volume} \end{gathered}

The volume is the volume of a sphere, therefore:

m=\rho_{water}(\frac{4}{3}\pi r^3)

Since the diameter of the raindrop is 3 millimeters, the radius is 1.5 mm or 0.0015 meters. Substituting we get:

m=(0.98\times10^3\frac{kg}{m^3})(\frac{4}{3}\pi(0.0015m)^3)

Solving the operations:

m=1.39\times10^{-5}kg

Now, we substitute the values in the formula for the drag force:

F_d=(1.39\times10^{-5}kg)(9.8\frac{m}{s^2})

Solving the operations:

F_d=1.36\times10^{-4}N

Now, we substitute in the formula:

1.36\times10^{-4}N=\frac{1}{2}C\rho_{air}Av^2

Now, we solve for the velocity:

\frac{1.36\times10^{-4}N}{\frac{1}{2}C\rho_{air}A}=v^2

Now, we substitute the values. We will use the area of a circle:

\frac{1.36\times10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^3})(\pi r^2)}=v^2

Substituting the radius:

\frac{1.36\cdot10^{-4}N}{\frac{1}{2}(0.45)(1.21\frac{kg}{m^{3}})(\pi(0.0015m)^2)}=v^2

Solving the operations:

70.67\frac{m^2}{s^2}=v^2

Now, we take the square root to both sides:

\begin{gathered} \sqrt{70.67\frac{m^2}{s^2}}=v \\  \\ 8.4\frac{m}{s}=v \\  \end{gathered}

Therefore, the velocity is 8.4 m/s

7 0
1 year ago
Only one symbol must be included in every circuit diagram. What symbol is it?
Kazeer [188]

Answer:

A symbol for a battery.

Explanation:

A battery, because every sinlge circuit AC or DC must have a source of energy, to supply it to every single device that is part of the circuit.

The voltage is defined by the Ohm's law and it is equal to the product of the current by the resistance.

4 0
3 years ago
Other questions:
  • How would you present weight change if earth had twice the mass that it does now
    12·1 answer
  • Consider a keen little boy who is having a wagon race with a friend. He starts from rest and
    11·1 answer
  • Which type of wave would actually slow down when moving from the air into the ocean?
    12·2 answers
  • if large amount of heat are transferred to a solid, what will probably happen to the state of the solid?
    10·2 answers
  • Electrically charged particles are found primarily in
    5·1 answer
  • A jogger runs at a constant rate of 10.0 m every 2.0 seconds. The jogger starts at the origin and runs in the positive direction
    14·1 answer
  • Who discovered the law of universal gravitation?
    12·1 answer
  • Which steps can be taken to translate the phrase “the height of a tree is increased by seven inches” into an algebraic expressio
    13·2 answers
  • 30cm³ of brine of relative density 1.15 and 42cm³ of water are mixed. What is the density of the final solution​
    10·1 answer
  • A simple harmonic transverse wave is propagating along a string towards the left direction as shown in the figure. figure shows
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!