1.) equal volume of different substances have "different" masses.
2.)The more closely packed arrangement the particles of a substance have, "increases" its density.
3.)the SI unit of power is "Watts".
4.)an iron nail sinks in water but floats on " mercury ".
5.)balloons used for advertisements are filled with " helium" gas.
6.)"Conduction" is the primary mode of heat transfer in liquid and gases.
I hope this helps you...
A bicyclist can ride their bicycle still on the road. Bicycle riders be able to take the public ways which has the similar rights and accountability as motorists and are subject to the same guidelines and protocols. The law says that individuals who ride bikes should ride as nearby to the right side of the road as likely excluding under the following conditions: when passing, preparing for a left go, evading risks, if the lane is too constricted to share, or if oncoming a place where a right turn is approved. In a road which has a bike lane the bicyclists roving slower than road traffic must custom the bike way excluding when creating a left turn, passing, evading hazardous settings, or impending a place where a right turn is approved.
from shortest wavelength to longest:
Ultraviolet
visible
infrared
microwave
so the answer is B
<h3>
Answer:</h3>
Input work
<h3>
Explanation:</h3>
Concept being tested: Efficiency of machines
Therefore we need to know what is the efficiency of a machine
- Efficiency of a machine is the ratio of work output of machine to the work input expressed as a percentage.
Efficiency = (Work output ÷ Work input) × 100%
- Therefore, if the work input is equal to the work output then the efficiency of the machine will be 100%.
- Most machines are not 100% efficient due to loss of energy in form of heat due to friction of the moving parts of the machine.
Answer:
A spring whose spring constant is 200 lbf/in has an initial force of 100 lbf acting on it. Determine the work, in Btu, required to compress it another 1 inch.
Step 1 of 4
The force at any point during the deflection of the spring is given by,
where is the initial force
and x is the deflection as measured from the point where the initial force occurred.
The work required to compress the spring is
Therefore work required to compress the spring is
The work required to compress the spring in Btu is calculated by
Where 1Btu =778
The work required to compress the spring,
eman Asked on February 19, 2018 in thermal fluid Sciences 4th solutions.
Explanation: